Mercurial > repos > public > sbplib_julia
comparison src/SbpOperators/volumeops/laplace/laplace.jl @ 1049:3bb94ce74697 feature/variable_derivatives
Merge default
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 23 Mar 2022 12:54:45 +0100 |
parents | 7fc8df5157a7 |
children | b4ee47f2aafb 6530fceef37c |
comparison
equal
deleted
inserted
replaced
1048:86aa69ad3304 | 1049:3bb94ce74697 |
---|---|
1 """ | 1 """ |
2 Laplace{T, Dim, TM} <: TensorMapping{T, Dim, Dim} | 2 Laplace{T, Dim, TM} <: LazyTensor{T, Dim, Dim} |
3 | 3 |
4 Implements the Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a | 4 Implements the Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a |
5 `TensorMapping`. Additionally `Laplace` stores the stencil set (parsed from TOML) | 5 `LazyTensor`. Additionally `Laplace` stores the `StencilSet` |
6 used to construct the `TensorMapping`. | 6 used to construct the `LazyTensor `. |
7 """ | 7 """ |
8 struct Laplace{T, Dim, TM<:TensorMapping{T, Dim, Dim}} <: TensorMapping{T, Dim, Dim} | 8 struct Laplace{T, Dim, TM<:LazyTensor{T, Dim, Dim}} <: LazyTensor{T, Dim, Dim} |
9 D::TM # Difference operator | 9 D::TM # Difference operator |
10 stencil_set # Stencil set of the operator | 10 stencil_set::StencilSet # Stencil set of the operator |
11 end | 11 end |
12 | 12 |
13 """ | 13 """ |
14 Laplace(grid::Equidistant, stencil_set) | 14 Laplace(grid::Equidistant, stencil_set) |
15 | 15 |
16 Creates the `Laplace` operator `Δ` on `grid` given a parsed TOML | 16 Creates the `Laplace` operator `Δ` on `grid` given a `stencil_set`. |
17 `stencil_set`. See also [`laplace`](@ref). | 17 |
18 See also [`laplace`](@ref). | |
18 """ | 19 """ |
19 function Laplace(grid::EquidistantGrid, stencil_set) | 20 function Laplace(grid::EquidistantGrid, stencil_set::StencilSet) |
20 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) | 21 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) |
21 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) | 22 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) |
22 Δ = laplace(grid, inner_stencil,closure_stencils) | 23 Δ = laplace(grid, inner_stencil,closure_stencils) |
23 return Laplace(Δ,stencil_set) | 24 return Laplace(Δ,stencil_set) |
24 end | 25 end |
25 | 26 |
26 LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D) | 27 LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D) |
27 LazyTensors.domain_size(L::Laplace) = LazyTensors.domain_size(L.D) | 28 LazyTensors.domain_size(L::Laplace) = LazyTensors.domain_size(L.D) |
28 LazyTensors.apply(L::Laplace, v::AbstractArray, I...) = LazyTensors.apply(L.D,v,I...) | 29 LazyTensors.apply(L::Laplace, v::AbstractArray, I...) = LazyTensors.apply(L.D,v,I...) |
29 | 30 |
30 # TODO: Implement pretty printing of Laplace once pretty printing of TensorMappings is implemented. | 31 # TODO: Implement pretty printing of Laplace once pretty printing of LazyTensors is implemented. |
31 # Base.show(io::IO, L::Laplace) = ... | 32 # Base.show(io::IO, L::Laplace) = ... |
32 | 33 |
33 """ | 34 """ |
34 laplace(grid::EquidistantGrid, inner_stencil, closure_stencils) | 35 laplace(grid::EquidistantGrid, inner_stencil, closure_stencils) |
35 | 36 |
36 Creates the Laplace operator operator `Δ` as a `TensorMapping` | 37 Creates the Laplace operator operator `Δ` as a `LazyTensor` |
37 | 38 |
38 `Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `grid`, using | 39 `Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `grid`, using |
39 the stencil `inner_stencil` in the interior and a set of stencils `closure_stencils` | 40 the stencil `inner_stencil` in the interior and a set of stencils `closure_stencils` |
40 for the points in the closure regions. | 41 for the points in the closure regions. |
41 | 42 |