Mercurial > repos > public > sbplib_julia
comparison test/testSbpOperators.jl @ 345:2fcc960836c6
Merge branch refactor/combine_to_one_package.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Sat, 26 Sep 2020 15:22:13 +0200 |
parents | 2b0c9b30ea3b |
children | 0844069ab5ff |
comparison
equal
deleted
inserted
replaced
343:e12c9a866513 | 345:2fcc960836c6 |
---|---|
1 using Test | |
2 using Sbplib.SbpOperators | |
3 using Sbplib.Grids | |
4 using Sbplib.RegionIndices | |
5 using Sbplib.LazyTensors | |
6 | |
7 @testset "SbpOperators" begin | |
8 | |
9 # @testset "apply_quadrature" begin | |
10 # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | |
11 # h = 0.5 | |
12 # | |
13 # @test apply_quadrature(op, h, 1.0, 10, 100) == h | |
14 # | |
15 # N = 10 | |
16 # qc = op.quadratureClosure | |
17 # q = h.*(qc..., ones(N-2*closuresize(op))..., reverse(qc)...) | |
18 # @assert length(q) == N | |
19 # | |
20 # for i ∈ 1:N | |
21 # @test apply_quadrature(op, h, 1.0, i, N) == q[i] | |
22 # end | |
23 # | |
24 # v = [2.,3.,2.,4.,5.,4.,3.,4.,5.,4.5] | |
25 # for i ∈ 1:N | |
26 # @test apply_quadrature(op, h, v[i], i, N) == q[i]*v[i] | |
27 # end | |
28 # end | |
29 | |
30 @testset "SecondDerivative" begin | |
31 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | |
32 L = 3.5 | |
33 g = EquidistantGrid((101,), (0.0,), (L,)) | |
34 h_inv = inverse_spacing(g) | |
35 h = 1/h_inv[1]; | |
36 Dₓₓ = SecondDerivative(h_inv[1],op.innerStencil,op.closureStencils,op.parity) | |
37 | |
38 f0(x::Float64) = 1. | |
39 f1(x::Float64) = x | |
40 f2(x::Float64) = 1/2*x^2 | |
41 f3(x::Float64) = 1/6*x^3 | |
42 f4(x::Float64) = 1/24*x^4 | |
43 f5(x::Float64) = sin(x) | |
44 f5ₓₓ(x::Float64) = -f5(x) | |
45 | |
46 v0 = evalOn(g,f0) | |
47 v1 = evalOn(g,f1) | |
48 v2 = evalOn(g,f2) | |
49 v3 = evalOn(g,f3) | |
50 v4 = evalOn(g,f4) | |
51 v5 = evalOn(g,f5) | |
52 | |
53 @test Dₓₓ isa TensorOperator{T,1} where T | |
54 @test Dₓₓ' isa TensorMapping{T,1,1} where T | |
55 | |
56 # TODO: Should perhaps set tolerance level for isapporx instead? | |
57 # Are these tolerance levels resonable or should tests be constructed | |
58 # differently? | |
59 equalitytol = 0.5*1e-10 | |
60 accuracytol = 0.5*1e-3 | |
61 # 4th order interior stencil, 2nd order boundary stencil, | |
62 # implies that L*v should be exact for v - monomial up to order 3. | |
63 # Exact differentiation is measured point-wise. For other grid functions | |
64 # the error is measured in the l2-norm. | |
65 @test all(abs.(collect(Dₓₓ*v0)) .<= equalitytol) | |
66 @test all(abs.(collect(Dₓₓ*v1)) .<= equalitytol) | |
67 @test all(abs.((collect(Dₓₓ*v2) - v0)) .<= equalitytol) | |
68 @test all(abs.((collect(Dₓₓ*v3) - v1)) .<= equalitytol) | |
69 e4 = collect(Dₓₓ*v4) - v2 | |
70 e5 = collect(Dₓₓ*v5) + v5 | |
71 @test sqrt(h*sum(collect(e4.^2))) <= accuracytol | |
72 @test sqrt(h*sum(collect(e5.^2))) <= accuracytol | |
73 end | |
74 | |
75 @testset "Laplace2D" begin | |
76 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | |
77 Lx = 1.5 | |
78 Ly = 3.2 | |
79 g = EquidistantGrid((102,131), (0.0, 0.0), (Lx,Ly)) | |
80 | |
81 h_inv = inverse_spacing(g) | |
82 h = spacing(g) | |
83 D_xx = SecondDerivative(h_inv[1],op.innerStencil,op.closureStencils,op.parity) | |
84 D_yy = SecondDerivative(h_inv[2],op.innerStencil,op.closureStencils,op.parity) | |
85 L = Laplace((D_xx,D_yy)) | |
86 | |
87 f0(x::Float64,y::Float64) = 2. | |
88 f1(x::Float64,y::Float64) = x+y | |
89 f2(x::Float64,y::Float64) = 1/2*x^2 + 1/2*y^2 | |
90 f3(x::Float64,y::Float64) = 1/6*x^3 + 1/6*y^3 | |
91 f4(x::Float64,y::Float64) = 1/24*x^4 + 1/24*y^4 | |
92 f5(x::Float64,y::Float64) = sin(x) + cos(y) | |
93 f5ₓₓ(x::Float64,y::Float64) = -f5(x,y) | |
94 | |
95 v0 = evalOn(g,f0) | |
96 v1 = evalOn(g,f1) | |
97 v2 = evalOn(g,f2) | |
98 v3 = evalOn(g,f3) | |
99 v4 = evalOn(g,f4) | |
100 v5 = evalOn(g,f5) | |
101 v5ₓₓ = evalOn(g,f5ₓₓ) | |
102 | |
103 @test L isa TensorOperator{T,2} where T | |
104 @test L' isa TensorMapping{T,2,2} where T | |
105 | |
106 # TODO: Should perhaps set tolerance level for isapporx instead? | |
107 # Are these tolerance levels resonable or should tests be constructed | |
108 # differently? | |
109 equalitytol = 0.5*1e-10 | |
110 accuracytol = 0.5*1e-3 | |
111 # 4th order interior stencil, 2nd order boundary stencil, | |
112 # implies that L*v should be exact for v - monomial up to order 3. | |
113 # Exact differentiation is measured point-wise. For other grid functions | |
114 # the error is measured in the H-norm. | |
115 @test all(abs.(collect(L*v0)) .<= equalitytol) | |
116 @test all(abs.(collect(L*v1)) .<= equalitytol) | |
117 @test all(collect(L*v2) .≈ v0) # Seems to be more accurate | |
118 @test all(abs.((collect(L*v3) - v1)) .<= equalitytol) | |
119 e4 = collect(L*v4) - v2 | |
120 e5 = collect(L*v5) - v5ₓₓ | |
121 @test sqrt(prod(h)*sum(collect(e4.^2))) <= accuracytol | |
122 @test sqrt(prod(h)*sum(collect(e5.^2))) <= accuracytol | |
123 end | |
124 | |
125 @testset "DiagonalInnerProduct" begin | |
126 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | |
127 L = 2.3 | |
128 g = EquidistantGrid((77,), (0.0,), (L,)) | |
129 h = spacing(g) | |
130 H = DiagonalInnerProduct(h[1],op.quadratureClosure) | |
131 v = ones(Float64, size(g)) | |
132 | |
133 @test H isa TensorOperator{T,1} where T | |
134 @test H' isa TensorMapping{T,1,1} where T | |
135 @test sum(collect(H*v)) ≈ L | |
136 @test collect(H*v) == collect(H'*v) | |
137 end | |
138 | |
139 @testset "Quadrature" begin | |
140 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | |
141 Lx = 2.3 | |
142 Ly = 5.2 | |
143 g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) | |
144 | |
145 h = spacing(g) | |
146 Hx = DiagonalInnerProduct(h[1],op.quadratureClosure); | |
147 Hy = DiagonalInnerProduct(h[2],op.quadratureClosure); | |
148 Q = Quadrature((Hx,Hy)) | |
149 | |
150 v = ones(Float64, size(g)) | |
151 | |
152 @test Q isa TensorOperator{T,2} where T | |
153 @test Q' isa TensorMapping{T,2,2} where T | |
154 @test sum(collect(Q*v)) ≈ (Lx*Ly) | |
155 @test collect(Q*v) == collect(Q'*v) | |
156 end | |
157 | |
158 @testset "InverseDiagonalInnerProduct" begin | |
159 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | |
160 L = 2.3 | |
161 g = EquidistantGrid((77,), (0.0,), (L,)) | |
162 h = spacing(g) | |
163 H = DiagonalInnerProduct(h[1],op.quadratureClosure) | |
164 | |
165 h_i = inverse_spacing(g) | |
166 Hi = InverseDiagonalInnerProduct(h_i[1],1 ./ op.quadratureClosure) | |
167 v = evalOn(g, x->sin(x)) | |
168 | |
169 @test Hi isa TensorOperator{T,1} where T | |
170 @test Hi' isa TensorMapping{T,1,1} where T | |
171 @test collect(Hi*H*v) ≈ v | |
172 @test collect(Hi*v) == collect(Hi'*v) | |
173 end | |
174 | |
175 @testset "InverseQuadrature" begin | |
176 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | |
177 Lx = 7.3 | |
178 Ly = 8.2 | |
179 g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) | |
180 | |
181 h = spacing(g) | |
182 Hx = DiagonalInnerProduct(h[1], op.quadratureClosure); | |
183 Hy = DiagonalInnerProduct(h[2], op.quadratureClosure); | |
184 Q = Quadrature((Hx,Hy)) | |
185 | |
186 hi = inverse_spacing(g) | |
187 Hix = InverseDiagonalInnerProduct(hi[1], 1 ./ op.quadratureClosure); | |
188 Hiy = InverseDiagonalInnerProduct(hi[2], 1 ./ op.quadratureClosure); | |
189 Qinv = InverseQuadrature((Hix,Hiy)) | |
190 v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) | |
191 | |
192 @test Qinv isa TensorOperator{T,2} where T | |
193 @test Qinv' isa TensorMapping{T,2,2} where T | |
194 @test collect(Qinv*Q*v) ≈ v | |
195 @test collect(Qinv*v) == collect(Qinv'*v) | |
196 end | |
197 # | |
198 # @testset "BoundaryValue" begin | |
199 # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | |
200 # g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0)) | |
201 # | |
202 # e_w = BoundaryValue(op, g, CartesianBoundary{1,Lower}()) | |
203 # e_e = BoundaryValue(op, g, CartesianBoundary{1,Upper}()) | |
204 # e_s = BoundaryValue(op, g, CartesianBoundary{2,Lower}()) | |
205 # e_n = BoundaryValue(op, g, CartesianBoundary{2,Upper}()) | |
206 # | |
207 # v = zeros(Float64, 4, 5) | |
208 # v[:,5] = [1, 2, 3,4] | |
209 # v[:,4] = [1, 2, 3,4] | |
210 # v[:,3] = [4, 5, 6, 7] | |
211 # v[:,2] = [7, 8, 9, 10] | |
212 # v[:,1] = [10, 11, 12, 13] | |
213 # | |
214 # @test e_w isa TensorMapping{T,2,1} where T | |
215 # @test e_w' isa TensorMapping{T,1,2} where T | |
216 # | |
217 # @test domain_size(e_w, (3,2)) == (2,) | |
218 # @test domain_size(e_e, (3,2)) == (2,) | |
219 # @test domain_size(e_s, (3,2)) == (3,) | |
220 # @test domain_size(e_n, (3,2)) == (3,) | |
221 # | |
222 # @test size(e_w'*v) == (5,) | |
223 # @test size(e_e'*v) == (5,) | |
224 # @test size(e_s'*v) == (4,) | |
225 # @test size(e_n'*v) == (4,) | |
226 # | |
227 # @test collect(e_w'*v) == [10,7,4,1.0,1] | |
228 # @test collect(e_e'*v) == [13,10,7,4,4.0] | |
229 # @test collect(e_s'*v) == [10,11,12,13.0] | |
230 # @test collect(e_n'*v) == [1,2,3,4.0] | |
231 # | |
232 # g_x = [1,2,3,4.0] | |
233 # g_y = [5,4,3,2,1.0] | |
234 # | |
235 # G_w = zeros(Float64, (4,5)) | |
236 # G_w[1,:] = g_y | |
237 # | |
238 # G_e = zeros(Float64, (4,5)) | |
239 # G_e[4,:] = g_y | |
240 # | |
241 # G_s = zeros(Float64, (4,5)) | |
242 # G_s[:,1] = g_x | |
243 # | |
244 # G_n = zeros(Float64, (4,5)) | |
245 # G_n[:,5] = g_x | |
246 # | |
247 # @test size(e_w*g_y) == (UnknownDim,5) | |
248 # @test size(e_e*g_y) == (UnknownDim,5) | |
249 # @test size(e_s*g_x) == (4,UnknownDim) | |
250 # @test size(e_n*g_x) == (4,UnknownDim) | |
251 # | |
252 # # These tests should be moved to where they are possible (i.e we know what the grid should be) | |
253 # @test_broken collect(e_w*g_y) == G_w | |
254 # @test_broken collect(e_e*g_y) == G_e | |
255 # @test_broken collect(e_s*g_x) == G_s | |
256 # @test_broken collect(e_n*g_x) == G_n | |
257 # end | |
258 # | |
259 # @testset "NormalDerivative" begin | |
260 # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | |
261 # g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0)) | |
262 # | |
263 # d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}()) | |
264 # d_e = NormalDerivative(op, g, CartesianBoundary{1,Upper}()) | |
265 # d_s = NormalDerivative(op, g, CartesianBoundary{2,Lower}()) | |
266 # d_n = NormalDerivative(op, g, CartesianBoundary{2,Upper}()) | |
267 # | |
268 # | |
269 # v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) | |
270 # v∂x = evalOn(g, (x,y)-> 2*x + y) | |
271 # v∂y = evalOn(g, (x,y)-> 2*(y-1) + x) | |
272 # | |
273 # @test d_w isa TensorMapping{T,2,1} where T | |
274 # @test d_w' isa TensorMapping{T,1,2} where T | |
275 # | |
276 # @test domain_size(d_w, (3,2)) == (2,) | |
277 # @test domain_size(d_e, (3,2)) == (2,) | |
278 # @test domain_size(d_s, (3,2)) == (3,) | |
279 # @test domain_size(d_n, (3,2)) == (3,) | |
280 # | |
281 # @test size(d_w'*v) == (6,) | |
282 # @test size(d_e'*v) == (6,) | |
283 # @test size(d_s'*v) == (5,) | |
284 # @test size(d_n'*v) == (5,) | |
285 # | |
286 # @test collect(d_w'*v) ≈ v∂x[1,:] | |
287 # @test collect(d_e'*v) ≈ v∂x[5,:] | |
288 # @test collect(d_s'*v) ≈ v∂y[:,1] | |
289 # @test collect(d_n'*v) ≈ v∂y[:,6] | |
290 # | |
291 # | |
292 # d_x_l = zeros(Float64, 5) | |
293 # d_x_u = zeros(Float64, 5) | |
294 # for i ∈ eachindex(d_x_l) | |
295 # d_x_l[i] = op.dClosure[i-1] | |
296 # d_x_u[i] = -op.dClosure[length(d_x_u)-i] | |
297 # end | |
298 # | |
299 # d_y_l = zeros(Float64, 6) | |
300 # d_y_u = zeros(Float64, 6) | |
301 # for i ∈ eachindex(d_y_l) | |
302 # d_y_l[i] = op.dClosure[i-1] | |
303 # d_y_u[i] = -op.dClosure[length(d_y_u)-i] | |
304 # end | |
305 # | |
306 # function prod_matrix(x,y) | |
307 # G = zeros(Float64, length(x), length(y)) | |
308 # for I ∈ CartesianIndices(G) | |
309 # G[I] = x[I[1]]*y[I[2]] | |
310 # end | |
311 # | |
312 # return G | |
313 # end | |
314 # | |
315 # g_x = [1,2,3,4.0,5] | |
316 # g_y = [5,4,3,2,1.0,11] | |
317 # | |
318 # G_w = prod_matrix(d_x_l, g_y) | |
319 # G_e = prod_matrix(d_x_u, g_y) | |
320 # G_s = prod_matrix(g_x, d_y_l) | |
321 # G_n = prod_matrix(g_x, d_y_u) | |
322 # | |
323 # | |
324 # @test size(d_w*g_y) == (UnknownDim,6) | |
325 # @test size(d_e*g_y) == (UnknownDim,6) | |
326 # @test size(d_s*g_x) == (5,UnknownDim) | |
327 # @test size(d_n*g_x) == (5,UnknownDim) | |
328 # | |
329 # # These tests should be moved to where they are possible (i.e we know what the grid should be) | |
330 # @test_broken collect(d_w*g_y) ≈ G_w | |
331 # @test_broken collect(d_e*g_y) ≈ G_e | |
332 # @test_broken collect(d_s*g_x) ≈ G_s | |
333 # @test_broken collect(d_n*g_x) ≈ G_n | |
334 # end | |
335 # | |
336 # @testset "BoundaryQuadrature" begin | |
337 # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | |
338 # g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0)) | |
339 # | |
340 # H_w = BoundaryQuadrature(op, g, CartesianBoundary{1,Lower}()) | |
341 # H_e = BoundaryQuadrature(op, g, CartesianBoundary{1,Upper}()) | |
342 # H_s = BoundaryQuadrature(op, g, CartesianBoundary{2,Lower}()) | |
343 # H_n = BoundaryQuadrature(op, g, CartesianBoundary{2,Upper}()) | |
344 # | |
345 # v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) | |
346 # | |
347 # function get_quadrature(N) | |
348 # qc = op.quadratureClosure | |
349 # q = (qc..., ones(N-2*closuresize(op))..., reverse(qc)...) | |
350 # @assert length(q) == N | |
351 # return q | |
352 # end | |
353 # | |
354 # v_w = v[1,:] | |
355 # v_e = v[10,:] | |
356 # v_s = v[:,1] | |
357 # v_n = v[:,11] | |
358 # | |
359 # q_x = spacing(g)[1].*get_quadrature(10) | |
360 # q_y = spacing(g)[2].*get_quadrature(11) | |
361 # | |
362 # @test H_w isa TensorOperator{T,1} where T | |
363 # | |
364 # @test domain_size(H_w, (3,)) == (3,) | |
365 # @test domain_size(H_n, (3,)) == (3,) | |
366 # | |
367 # @test range_size(H_w, (3,)) == (3,) | |
368 # @test range_size(H_n, (3,)) == (3,) | |
369 # | |
370 # @test size(H_w*v_w) == (11,) | |
371 # @test size(H_e*v_e) == (11,) | |
372 # @test size(H_s*v_s) == (10,) | |
373 # @test size(H_n*v_n) == (10,) | |
374 # | |
375 # @test collect(H_w*v_w) ≈ q_y.*v_w | |
376 # @test collect(H_e*v_e) ≈ q_y.*v_e | |
377 # @test collect(H_s*v_s) ≈ q_x.*v_s | |
378 # @test collect(H_n*v_n) ≈ q_x.*v_n | |
379 # | |
380 # @test collect(H_w'*v_w) == collect(H_w'*v_w) | |
381 # @test collect(H_e'*v_e) == collect(H_e'*v_e) | |
382 # @test collect(H_s'*v_s) == collect(H_s'*v_s) | |
383 # @test collect(H_n'*v_n) == collect(H_n'*v_n) | |
384 # end | |
385 | |
386 end |