Mercurial > repos > public > sbplib_julia
view test/testSbpOperators.jl @ 338:2b0c9b30ea3b refactor/combine_to_one_package
Add test sets for each submodule to make the test output nicer
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 25 Sep 2020 13:48:23 +0200 |
parents | f4e3e71a4ff4 |
children | 0844069ab5ff |
line wrap: on
line source
using Test using Sbplib.SbpOperators using Sbplib.Grids using Sbplib.RegionIndices using Sbplib.LazyTensors @testset "SbpOperators" begin # @testset "apply_quadrature" begin # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") # h = 0.5 # # @test apply_quadrature(op, h, 1.0, 10, 100) == h # # N = 10 # qc = op.quadratureClosure # q = h.*(qc..., ones(N-2*closuresize(op))..., reverse(qc)...) # @assert length(q) == N # # for i ∈ 1:N # @test apply_quadrature(op, h, 1.0, i, N) == q[i] # end # # v = [2.,3.,2.,4.,5.,4.,3.,4.,5.,4.5] # for i ∈ 1:N # @test apply_quadrature(op, h, v[i], i, N) == q[i]*v[i] # end # end @testset "SecondDerivative" begin op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") L = 3.5 g = EquidistantGrid((101,), (0.0,), (L,)) h_inv = inverse_spacing(g) h = 1/h_inv[1]; Dₓₓ = SecondDerivative(h_inv[1],op.innerStencil,op.closureStencils,op.parity) f0(x::Float64) = 1. f1(x::Float64) = x f2(x::Float64) = 1/2*x^2 f3(x::Float64) = 1/6*x^3 f4(x::Float64) = 1/24*x^4 f5(x::Float64) = sin(x) f5ₓₓ(x::Float64) = -f5(x) v0 = evalOn(g,f0) v1 = evalOn(g,f1) v2 = evalOn(g,f2) v3 = evalOn(g,f3) v4 = evalOn(g,f4) v5 = evalOn(g,f5) @test Dₓₓ isa TensorOperator{T,1} where T @test Dₓₓ' isa TensorMapping{T,1,1} where T # TODO: Should perhaps set tolerance level for isapporx instead? # Are these tolerance levels resonable or should tests be constructed # differently? equalitytol = 0.5*1e-10 accuracytol = 0.5*1e-3 # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for v - monomial up to order 3. # Exact differentiation is measured point-wise. For other grid functions # the error is measured in the l2-norm. @test all(abs.(collect(Dₓₓ*v0)) .<= equalitytol) @test all(abs.(collect(Dₓₓ*v1)) .<= equalitytol) @test all(abs.((collect(Dₓₓ*v2) - v0)) .<= equalitytol) @test all(abs.((collect(Dₓₓ*v3) - v1)) .<= equalitytol) e4 = collect(Dₓₓ*v4) - v2 e5 = collect(Dₓₓ*v5) + v5 @test sqrt(h*sum(collect(e4.^2))) <= accuracytol @test sqrt(h*sum(collect(e5.^2))) <= accuracytol end @testset "Laplace2D" begin op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") Lx = 1.5 Ly = 3.2 g = EquidistantGrid((102,131), (0.0, 0.0), (Lx,Ly)) h_inv = inverse_spacing(g) h = spacing(g) D_xx = SecondDerivative(h_inv[1],op.innerStencil,op.closureStencils,op.parity) D_yy = SecondDerivative(h_inv[2],op.innerStencil,op.closureStencils,op.parity) L = Laplace((D_xx,D_yy)) f0(x::Float64,y::Float64) = 2. f1(x::Float64,y::Float64) = x+y f2(x::Float64,y::Float64) = 1/2*x^2 + 1/2*y^2 f3(x::Float64,y::Float64) = 1/6*x^3 + 1/6*y^3 f4(x::Float64,y::Float64) = 1/24*x^4 + 1/24*y^4 f5(x::Float64,y::Float64) = sin(x) + cos(y) f5ₓₓ(x::Float64,y::Float64) = -f5(x,y) v0 = evalOn(g,f0) v1 = evalOn(g,f1) v2 = evalOn(g,f2) v3 = evalOn(g,f3) v4 = evalOn(g,f4) v5 = evalOn(g,f5) v5ₓₓ = evalOn(g,f5ₓₓ) @test L isa TensorOperator{T,2} where T @test L' isa TensorMapping{T,2,2} where T # TODO: Should perhaps set tolerance level for isapporx instead? # Are these tolerance levels resonable or should tests be constructed # differently? equalitytol = 0.5*1e-10 accuracytol = 0.5*1e-3 # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for v - monomial up to order 3. # Exact differentiation is measured point-wise. For other grid functions # the error is measured in the H-norm. @test all(abs.(collect(L*v0)) .<= equalitytol) @test all(abs.(collect(L*v1)) .<= equalitytol) @test all(collect(L*v2) .≈ v0) # Seems to be more accurate @test all(abs.((collect(L*v3) - v1)) .<= equalitytol) e4 = collect(L*v4) - v2 e5 = collect(L*v5) - v5ₓₓ @test sqrt(prod(h)*sum(collect(e4.^2))) <= accuracytol @test sqrt(prod(h)*sum(collect(e5.^2))) <= accuracytol end @testset "DiagonalInnerProduct" begin op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") L = 2.3 g = EquidistantGrid((77,), (0.0,), (L,)) h = spacing(g) H = DiagonalInnerProduct(h[1],op.quadratureClosure) v = ones(Float64, size(g)) @test H isa TensorOperator{T,1} where T @test H' isa TensorMapping{T,1,1} where T @test sum(collect(H*v)) ≈ L @test collect(H*v) == collect(H'*v) end @testset "Quadrature" begin op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") Lx = 2.3 Ly = 5.2 g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) h = spacing(g) Hx = DiagonalInnerProduct(h[1],op.quadratureClosure); Hy = DiagonalInnerProduct(h[2],op.quadratureClosure); Q = Quadrature((Hx,Hy)) v = ones(Float64, size(g)) @test Q isa TensorOperator{T,2} where T @test Q' isa TensorMapping{T,2,2} where T @test sum(collect(Q*v)) ≈ (Lx*Ly) @test collect(Q*v) == collect(Q'*v) end @testset "InverseDiagonalInnerProduct" begin op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") L = 2.3 g = EquidistantGrid((77,), (0.0,), (L,)) h = spacing(g) H = DiagonalInnerProduct(h[1],op.quadratureClosure) h_i = inverse_spacing(g) Hi = InverseDiagonalInnerProduct(h_i[1],1 ./ op.quadratureClosure) v = evalOn(g, x->sin(x)) @test Hi isa TensorOperator{T,1} where T @test Hi' isa TensorMapping{T,1,1} where T @test collect(Hi*H*v) ≈ v @test collect(Hi*v) == collect(Hi'*v) end @testset "InverseQuadrature" begin op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") Lx = 7.3 Ly = 8.2 g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) h = spacing(g) Hx = DiagonalInnerProduct(h[1], op.quadratureClosure); Hy = DiagonalInnerProduct(h[2], op.quadratureClosure); Q = Quadrature((Hx,Hy)) hi = inverse_spacing(g) Hix = InverseDiagonalInnerProduct(hi[1], 1 ./ op.quadratureClosure); Hiy = InverseDiagonalInnerProduct(hi[2], 1 ./ op.quadratureClosure); Qinv = InverseQuadrature((Hix,Hiy)) v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) @test Qinv isa TensorOperator{T,2} where T @test Qinv' isa TensorMapping{T,2,2} where T @test collect(Qinv*Q*v) ≈ v @test collect(Qinv*v) == collect(Qinv'*v) end # # @testset "BoundaryValue" begin # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") # g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0)) # # e_w = BoundaryValue(op, g, CartesianBoundary{1,Lower}()) # e_e = BoundaryValue(op, g, CartesianBoundary{1,Upper}()) # e_s = BoundaryValue(op, g, CartesianBoundary{2,Lower}()) # e_n = BoundaryValue(op, g, CartesianBoundary{2,Upper}()) # # v = zeros(Float64, 4, 5) # v[:,5] = [1, 2, 3,4] # v[:,4] = [1, 2, 3,4] # v[:,3] = [4, 5, 6, 7] # v[:,2] = [7, 8, 9, 10] # v[:,1] = [10, 11, 12, 13] # # @test e_w isa TensorMapping{T,2,1} where T # @test e_w' isa TensorMapping{T,1,2} where T # # @test domain_size(e_w, (3,2)) == (2,) # @test domain_size(e_e, (3,2)) == (2,) # @test domain_size(e_s, (3,2)) == (3,) # @test domain_size(e_n, (3,2)) == (3,) # # @test size(e_w'*v) == (5,) # @test size(e_e'*v) == (5,) # @test size(e_s'*v) == (4,) # @test size(e_n'*v) == (4,) # # @test collect(e_w'*v) == [10,7,4,1.0,1] # @test collect(e_e'*v) == [13,10,7,4,4.0] # @test collect(e_s'*v) == [10,11,12,13.0] # @test collect(e_n'*v) == [1,2,3,4.0] # # g_x = [1,2,3,4.0] # g_y = [5,4,3,2,1.0] # # G_w = zeros(Float64, (4,5)) # G_w[1,:] = g_y # # G_e = zeros(Float64, (4,5)) # G_e[4,:] = g_y # # G_s = zeros(Float64, (4,5)) # G_s[:,1] = g_x # # G_n = zeros(Float64, (4,5)) # G_n[:,5] = g_x # # @test size(e_w*g_y) == (UnknownDim,5) # @test size(e_e*g_y) == (UnknownDim,5) # @test size(e_s*g_x) == (4,UnknownDim) # @test size(e_n*g_x) == (4,UnknownDim) # # # These tests should be moved to where they are possible (i.e we know what the grid should be) # @test_broken collect(e_w*g_y) == G_w # @test_broken collect(e_e*g_y) == G_e # @test_broken collect(e_s*g_x) == G_s # @test_broken collect(e_n*g_x) == G_n # end # # @testset "NormalDerivative" begin # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") # g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0)) # # d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}()) # d_e = NormalDerivative(op, g, CartesianBoundary{1,Upper}()) # d_s = NormalDerivative(op, g, CartesianBoundary{2,Lower}()) # d_n = NormalDerivative(op, g, CartesianBoundary{2,Upper}()) # # # v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) # v∂x = evalOn(g, (x,y)-> 2*x + y) # v∂y = evalOn(g, (x,y)-> 2*(y-1) + x) # # @test d_w isa TensorMapping{T,2,1} where T # @test d_w' isa TensorMapping{T,1,2} where T # # @test domain_size(d_w, (3,2)) == (2,) # @test domain_size(d_e, (3,2)) == (2,) # @test domain_size(d_s, (3,2)) == (3,) # @test domain_size(d_n, (3,2)) == (3,) # # @test size(d_w'*v) == (6,) # @test size(d_e'*v) == (6,) # @test size(d_s'*v) == (5,) # @test size(d_n'*v) == (5,) # # @test collect(d_w'*v) ≈ v∂x[1,:] # @test collect(d_e'*v) ≈ v∂x[5,:] # @test collect(d_s'*v) ≈ v∂y[:,1] # @test collect(d_n'*v) ≈ v∂y[:,6] # # # d_x_l = zeros(Float64, 5) # d_x_u = zeros(Float64, 5) # for i ∈ eachindex(d_x_l) # d_x_l[i] = op.dClosure[i-1] # d_x_u[i] = -op.dClosure[length(d_x_u)-i] # end # # d_y_l = zeros(Float64, 6) # d_y_u = zeros(Float64, 6) # for i ∈ eachindex(d_y_l) # d_y_l[i] = op.dClosure[i-1] # d_y_u[i] = -op.dClosure[length(d_y_u)-i] # end # # function prod_matrix(x,y) # G = zeros(Float64, length(x), length(y)) # for I ∈ CartesianIndices(G) # G[I] = x[I[1]]*y[I[2]] # end # # return G # end # # g_x = [1,2,3,4.0,5] # g_y = [5,4,3,2,1.0,11] # # G_w = prod_matrix(d_x_l, g_y) # G_e = prod_matrix(d_x_u, g_y) # G_s = prod_matrix(g_x, d_y_l) # G_n = prod_matrix(g_x, d_y_u) # # # @test size(d_w*g_y) == (UnknownDim,6) # @test size(d_e*g_y) == (UnknownDim,6) # @test size(d_s*g_x) == (5,UnknownDim) # @test size(d_n*g_x) == (5,UnknownDim) # # # These tests should be moved to where they are possible (i.e we know what the grid should be) # @test_broken collect(d_w*g_y) ≈ G_w # @test_broken collect(d_e*g_y) ≈ G_e # @test_broken collect(d_s*g_x) ≈ G_s # @test_broken collect(d_n*g_x) ≈ G_n # end # # @testset "BoundaryQuadrature" begin # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") # g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0)) # # H_w = BoundaryQuadrature(op, g, CartesianBoundary{1,Lower}()) # H_e = BoundaryQuadrature(op, g, CartesianBoundary{1,Upper}()) # H_s = BoundaryQuadrature(op, g, CartesianBoundary{2,Lower}()) # H_n = BoundaryQuadrature(op, g, CartesianBoundary{2,Upper}()) # # v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) # # function get_quadrature(N) # qc = op.quadratureClosure # q = (qc..., ones(N-2*closuresize(op))..., reverse(qc)...) # @assert length(q) == N # return q # end # # v_w = v[1,:] # v_e = v[10,:] # v_s = v[:,1] # v_n = v[:,11] # # q_x = spacing(g)[1].*get_quadrature(10) # q_y = spacing(g)[2].*get_quadrature(11) # # @test H_w isa TensorOperator{T,1} where T # # @test domain_size(H_w, (3,)) == (3,) # @test domain_size(H_n, (3,)) == (3,) # # @test range_size(H_w, (3,)) == (3,) # @test range_size(H_n, (3,)) == (3,) # # @test size(H_w*v_w) == (11,) # @test size(H_e*v_e) == (11,) # @test size(H_s*v_s) == (10,) # @test size(H_n*v_n) == (10,) # # @test collect(H_w*v_w) ≈ q_y.*v_w # @test collect(H_e*v_e) ≈ q_y.*v_e # @test collect(H_s*v_s) ≈ q_x.*v_s # @test collect(H_n*v_n) ≈ q_x.*v_n # # @test collect(H_w'*v_w) == collect(H_w'*v_w) # @test collect(H_e'*v_e) == collect(H_e'*v_e) # @test collect(H_s'*v_s) == collect(H_s'*v_s) # @test collect(H_n'*v_n) == collect(H_n'*v_n) # end end