Mercurial > repos > public > sbplib_julia
comparison test/testDiffOps.jl @ 345:2fcc960836c6
Merge branch refactor/combine_to_one_package.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Sat, 26 Sep 2020 15:22:13 +0200 |
parents | 2b0c9b30ea3b |
children | ffddaf053085 |
comparison
equal
deleted
inserted
replaced
343:e12c9a866513 | 345:2fcc960836c6 |
---|---|
1 using Test | |
2 using Sbplib.DiffOps | |
3 using Sbplib.Grids | |
4 using Sbplib.SbpOperators | |
5 using Sbplib.RegionIndices | |
6 using Sbplib.LazyTensors | |
7 | |
8 @testset "DiffOps" begin | |
9 | |
10 @testset "Laplace2D" begin | |
11 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | |
12 Lx = 3.5 | |
13 Ly = 7.2 | |
14 g = EquidistantGrid((42,41), (0.0, 0.0), (Lx,Ly)) | |
15 L = Laplace(g, 1., op) | |
16 H = quadrature(L) | |
17 | |
18 f0(x::Float64,y::Float64) = 2. | |
19 f1(x::Float64,y::Float64) = x+y | |
20 f2(x::Float64,y::Float64) = 1/2*x^2 + 1/2*y^2 | |
21 f3(x::Float64,y::Float64) = 1/6*x^3 + 1/6*y^3 | |
22 f4(x::Float64,y::Float64) = 1/24*x^4 + 1/24*y^4 | |
23 f5(x::Float64,y::Float64) = sin(x) + cos(y) | |
24 f5ₓₓ(x::Float64,y::Float64) = -f5(x,y) | |
25 | |
26 v0 = evalOn(g,f0) | |
27 v1 = evalOn(g,f1) | |
28 v2 = evalOn(g,f2) | |
29 v3 = evalOn(g,f3) | |
30 v4 = evalOn(g,f4) | |
31 v5 = evalOn(g,f5) | |
32 v5ₓₓ = evalOn(g,f5ₓₓ) | |
33 | |
34 @test L isa TensorOperator{T,2} where T | |
35 @test L' isa TensorMapping{T,2,2} where T | |
36 | |
37 # TODO: Should perhaps set tolerance level for isapporx instead? | |
38 # Are these tolerance levels resonable or should tests be constructed | |
39 # differently? | |
40 equalitytol = 0.5*1e-10 | |
41 accuracytol = 0.5*1e-3 | |
42 # 4th order interior stencil, 2nd order boundary stencil, | |
43 # implies that L*v should be exact for v - monomial up to order 3. | |
44 # Exact differentiation is measured point-wise. For other grid functions | |
45 # the error is measured in the H-norm. | |
46 @test all(abs.(collect(L*v0)) .<= equalitytol) | |
47 @test all(abs.(collect(L*v1)) .<= equalitytol) | |
48 @test all(collect(L*v2) .≈ v0) # Seems to be more accurate | |
49 @test all(abs.((collect(L*v3) - v1)) .<= equalitytol) | |
50 e4 = collect(L*v4) - v2 | |
51 e5 = collect(L*v5) - v5ₓₓ | |
52 @test sum(collect(H*e4.^2)) <= accuracytol | |
53 @test sum(collect(H*e5.^2)) <= accuracytol | |
54 end | |
55 | |
56 @testset "Quadrature" begin | |
57 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | |
58 Lx = 2.3 | |
59 Ly = 5.2 | |
60 g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) | |
61 H = Quadrature(op,g) | |
62 v = ones(Float64, size(g)) | |
63 | |
64 @test H isa TensorOperator{T,2} where T | |
65 @test H' isa TensorMapping{T,2,2} where T | |
66 @test sum(collect(H*v)) ≈ (Lx*Ly) | |
67 @test collect(H*v) == collect(H'*v) | |
68 end | |
69 | |
70 @testset "InverseQuadrature" begin | |
71 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | |
72 Lx = 7.3 | |
73 Ly = 8.2 | |
74 g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) | |
75 H = Quadrature(op,g) | |
76 Hinv = InverseQuadrature(op,g) | |
77 v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) | |
78 | |
79 @test Hinv isa TensorOperator{T,2} where T | |
80 @test Hinv' isa TensorMapping{T,2,2} where T | |
81 @test collect(Hinv*H*v) ≈ v | |
82 @test collect(Hinv*v) == collect(Hinv'*v) | |
83 end | |
84 | |
85 @testset "BoundaryValue" begin | |
86 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | |
87 g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0)) | |
88 | |
89 e_w = BoundaryValue(op, g, CartesianBoundary{1,Lower}()) | |
90 e_e = BoundaryValue(op, g, CartesianBoundary{1,Upper}()) | |
91 e_s = BoundaryValue(op, g, CartesianBoundary{2,Lower}()) | |
92 e_n = BoundaryValue(op, g, CartesianBoundary{2,Upper}()) | |
93 | |
94 v = zeros(Float64, 4, 5) | |
95 v[:,5] = [1, 2, 3,4] | |
96 v[:,4] = [1, 2, 3,4] | |
97 v[:,3] = [4, 5, 6, 7] | |
98 v[:,2] = [7, 8, 9, 10] | |
99 v[:,1] = [10, 11, 12, 13] | |
100 | |
101 @test e_w isa TensorMapping{T,2,1} where T | |
102 @test e_w' isa TensorMapping{T,1,2} where T | |
103 | |
104 @test domain_size(e_w, (3,2)) == (2,) | |
105 @test domain_size(e_e, (3,2)) == (2,) | |
106 @test domain_size(e_s, (3,2)) == (3,) | |
107 @test domain_size(e_n, (3,2)) == (3,) | |
108 | |
109 @test size(e_w'*v) == (5,) | |
110 @test size(e_e'*v) == (5,) | |
111 @test size(e_s'*v) == (4,) | |
112 @test size(e_n'*v) == (4,) | |
113 | |
114 @test collect(e_w'*v) == [10,7,4,1.0,1] | |
115 @test collect(e_e'*v) == [13,10,7,4,4.0] | |
116 @test collect(e_s'*v) == [10,11,12,13.0] | |
117 @test collect(e_n'*v) == [1,2,3,4.0] | |
118 | |
119 g_x = [1,2,3,4.0] | |
120 g_y = [5,4,3,2,1.0] | |
121 | |
122 G_w = zeros(Float64, (4,5)) | |
123 G_w[1,:] = g_y | |
124 | |
125 G_e = zeros(Float64, (4,5)) | |
126 G_e[4,:] = g_y | |
127 | |
128 G_s = zeros(Float64, (4,5)) | |
129 G_s[:,1] = g_x | |
130 | |
131 G_n = zeros(Float64, (4,5)) | |
132 G_n[:,5] = g_x | |
133 | |
134 @test size(e_w*g_y) == (UnknownDim,5) | |
135 @test size(e_e*g_y) == (UnknownDim,5) | |
136 @test size(e_s*g_x) == (4,UnknownDim) | |
137 @test size(e_n*g_x) == (4,UnknownDim) | |
138 | |
139 # These tests should be moved to where they are possible (i.e we know what the grid should be) | |
140 @test_broken collect(e_w*g_y) == G_w | |
141 @test_broken collect(e_e*g_y) == G_e | |
142 @test_broken collect(e_s*g_x) == G_s | |
143 @test_broken collect(e_n*g_x) == G_n | |
144 end | |
145 | |
146 @testset "NormalDerivative" begin | |
147 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | |
148 g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0)) | |
149 | |
150 d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}()) | |
151 d_e = NormalDerivative(op, g, CartesianBoundary{1,Upper}()) | |
152 d_s = NormalDerivative(op, g, CartesianBoundary{2,Lower}()) | |
153 d_n = NormalDerivative(op, g, CartesianBoundary{2,Upper}()) | |
154 | |
155 | |
156 v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) | |
157 v∂x = evalOn(g, (x,y)-> 2*x + y) | |
158 v∂y = evalOn(g, (x,y)-> 2*(y-1) + x) | |
159 | |
160 @test d_w isa TensorMapping{T,2,1} where T | |
161 @test d_w' isa TensorMapping{T,1,2} where T | |
162 | |
163 @test domain_size(d_w, (3,2)) == (2,) | |
164 @test domain_size(d_e, (3,2)) == (2,) | |
165 @test domain_size(d_s, (3,2)) == (3,) | |
166 @test domain_size(d_n, (3,2)) == (3,) | |
167 | |
168 @test size(d_w'*v) == (6,) | |
169 @test size(d_e'*v) == (6,) | |
170 @test size(d_s'*v) == (5,) | |
171 @test size(d_n'*v) == (5,) | |
172 | |
173 @test collect(d_w'*v) ≈ v∂x[1,:] | |
174 @test collect(d_e'*v) ≈ v∂x[5,:] | |
175 @test collect(d_s'*v) ≈ v∂y[:,1] | |
176 @test collect(d_n'*v) ≈ v∂y[:,6] | |
177 | |
178 | |
179 d_x_l = zeros(Float64, 5) | |
180 d_x_u = zeros(Float64, 5) | |
181 for i ∈ eachindex(d_x_l) | |
182 d_x_l[i] = op.dClosure[i-1] | |
183 d_x_u[i] = -op.dClosure[length(d_x_u)-i] | |
184 end | |
185 | |
186 d_y_l = zeros(Float64, 6) | |
187 d_y_u = zeros(Float64, 6) | |
188 for i ∈ eachindex(d_y_l) | |
189 d_y_l[i] = op.dClosure[i-1] | |
190 d_y_u[i] = -op.dClosure[length(d_y_u)-i] | |
191 end | |
192 | |
193 function prod_matrix(x,y) | |
194 G = zeros(Float64, length(x), length(y)) | |
195 for I ∈ CartesianIndices(G) | |
196 G[I] = x[I[1]]*y[I[2]] | |
197 end | |
198 | |
199 return G | |
200 end | |
201 | |
202 g_x = [1,2,3,4.0,5] | |
203 g_y = [5,4,3,2,1.0,11] | |
204 | |
205 G_w = prod_matrix(d_x_l, g_y) | |
206 G_e = prod_matrix(d_x_u, g_y) | |
207 G_s = prod_matrix(g_x, d_y_l) | |
208 G_n = prod_matrix(g_x, d_y_u) | |
209 | |
210 | |
211 @test size(d_w*g_y) == (UnknownDim,6) | |
212 @test size(d_e*g_y) == (UnknownDim,6) | |
213 @test size(d_s*g_x) == (5,UnknownDim) | |
214 @test size(d_n*g_x) == (5,UnknownDim) | |
215 | |
216 # These tests should be moved to where they are possible (i.e we know what the grid should be) | |
217 @test_broken collect(d_w*g_y) ≈ G_w | |
218 @test_broken collect(d_e*g_y) ≈ G_e | |
219 @test_broken collect(d_s*g_x) ≈ G_s | |
220 @test_broken collect(d_n*g_x) ≈ G_n | |
221 end | |
222 | |
223 @testset "BoundaryQuadrature" begin | |
224 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | |
225 g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0)) | |
226 | |
227 H_w = BoundaryQuadrature(op, g, CartesianBoundary{1,Lower}()) | |
228 H_e = BoundaryQuadrature(op, g, CartesianBoundary{1,Upper}()) | |
229 H_s = BoundaryQuadrature(op, g, CartesianBoundary{2,Lower}()) | |
230 H_n = BoundaryQuadrature(op, g, CartesianBoundary{2,Upper}()) | |
231 | |
232 v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) | |
233 | |
234 function get_quadrature(N) | |
235 qc = op.quadratureClosure | |
236 q = (qc..., ones(N-2*closuresize(op))..., reverse(qc)...) | |
237 @assert length(q) == N | |
238 return q | |
239 end | |
240 | |
241 v_w = v[1,:] | |
242 v_e = v[10,:] | |
243 v_s = v[:,1] | |
244 v_n = v[:,11] | |
245 | |
246 q_x = spacing(g)[1].*get_quadrature(10) | |
247 q_y = spacing(g)[2].*get_quadrature(11) | |
248 | |
249 @test H_w isa TensorOperator{T,1} where T | |
250 | |
251 @test domain_size(H_w, (3,)) == (3,) | |
252 @test domain_size(H_n, (3,)) == (3,) | |
253 | |
254 @test range_size(H_w, (3,)) == (3,) | |
255 @test range_size(H_n, (3,)) == (3,) | |
256 | |
257 @test size(H_w*v_w) == (11,) | |
258 @test size(H_e*v_e) == (11,) | |
259 @test size(H_s*v_s) == (10,) | |
260 @test size(H_n*v_n) == (10,) | |
261 | |
262 @test collect(H_w*v_w) ≈ q_y.*v_w | |
263 @test collect(H_e*v_e) ≈ q_y.*v_e | |
264 @test collect(H_s*v_s) ≈ q_x.*v_s | |
265 @test collect(H_n*v_n) ≈ q_x.*v_n | |
266 | |
267 @test collect(H_w'*v_w) == collect(H_w'*v_w) | |
268 @test collect(H_e'*v_e) == collect(H_e'*v_e) | |
269 @test collect(H_s'*v_s) == collect(H_s'*v_s) | |
270 @test collect(H_n'*v_n) == collect(H_n'*v_n) | |
271 end | |
272 | |
273 end |