Mercurial > repos > public > sbplib_julia
comparison src/SbpOperators/volumeops/laplace/laplace.jl @ 1598:19cdec9c21cb feature/boundary_conditions
Implement and test sat_tensors for Dirichlet and Neumann conditions
author | Vidar Stiernström <vidar.stiernstrom@gmail.com> |
---|---|
date | Sun, 26 May 2024 18:19:02 -0700 |
parents | 8d60d045c2a2 |
children | 37b05221beda |
comparison
equal
deleted
inserted
replaced
1597:330c39505a94 | 1598:19cdec9c21cb |
---|---|
51 end | 51 end |
52 return Δ | 52 return Δ |
53 end | 53 end |
54 laplace(g::EquidistantGrid, stencil_set) = second_derivative(g, stencil_set) | 54 laplace(g::EquidistantGrid, stencil_set) = second_derivative(g, stencil_set) |
55 | 55 |
56 # TODO: Add sat_tensor for Diirichlet condition | 56 """ |
57 sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition, tuning) | |
58 | |
59 The operators required to construct the SAT for imposing a Dirichlet condition. | |
60 `tuning` specifies the strength of the penalty. See | |
61 | |
62 See also: [`sat`,`DirichletCondition`, `positivity_decomposition`](@ref). | |
63 """ | |
64 function BoundaryConditions.sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition, tuning) | |
65 id = bc.id | |
66 set = Δ.stencil_set | |
67 H⁻¹ = inverse_inner_product(g,set) | |
68 Hᵧ = inner_product(boundary_grid(g, id), set) | |
69 e = boundary_restriction(g, set, id) | |
70 d = normal_derivative(g, set, id) | |
71 B = positivity_decomposition(Δ, g, bc, tuning) | |
72 sat_op = H⁻¹∘(d' - B*e')∘Hᵧ | |
73 return sat_op, e | |
74 end | |
75 BoundaryConditions.sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition) = BoundaryConditions.sat_tensors(Δ, g, bc, (1.,1.)) | |
57 | 76 |
58 """ | 77 """ |
59 sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) | 78 sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) |
60 | 79 |
61 The operators required to construct the SAT for imposing Neumann condition | 80 The operators required to construct the SAT for imposing a Neumann condition |
62 | 81 |
63 | 82 |
64 See also: [`sat`,`NeumannCondition`](@ref). | 83 See also: [`sat`,`NeumannCondition`](@ref). |
65 """ | 84 """ |
66 function BoundaryConditions.sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) | 85 function BoundaryConditions.sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) |
69 H⁻¹ = inverse_inner_product(g,set) | 88 H⁻¹ = inverse_inner_product(g,set) |
70 Hᵧ = inner_product(boundary_grid(g, id), set) | 89 Hᵧ = inner_product(boundary_grid(g, id), set) |
71 e = boundary_restriction(g, set, id) | 90 e = boundary_restriction(g, set, id) |
72 d = normal_derivative(g, set, id) | 91 d = normal_derivative(g, set, id) |
73 | 92 |
74 sat_op = H⁻¹∘e'∘Hᵧ | 93 sat_op = -H⁻¹∘e'∘Hᵧ |
75 return sat_op, d | 94 return sat_op, d |
76 end | 95 end |
96 | |
97 function positivity_decomposition(Δ::Laplace, g::Grid, bc::DirichletCondition, tuning) | |
98 pos_prop = positivity_properties(Δ) | |
99 h = spacing(orthogonal_grid(g, bc.id)) | |
100 θ_H = pos_prop.theta_H | |
101 τ_H = tuning[1]*ndims(g)/(h*θ_H) | |
102 θ_R = pos_prop.theta_R | |
103 τ_R = tuning[2]/(h*θ_R) | |
104 B = τ_H + τ_R | |
105 return B | |
106 end | |
107 | |
108 positivity_properties(Δ::Laplace) = parse_named_tuple(Δ.stencil_set["Positivity"]["D2"]) |