Mercurial > repos > public > sbplib_julia
comparison test/testSbpOperators.jl @ 706:19301615b340 feature/laplace_opset
Use the Laplace struct in tests for accuracy
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Mon, 15 Feb 2021 17:59:26 +0100 |
parents | bf1387f867b8 |
children | ee1808820929 |
comparison
equal
deleted
inserted
replaced
705:bf1387f867b8 | 706:19301615b340 |
---|---|
499 Δv = evalOn(g_3D,(x,y,z) -> -sin(x) - cos(y) + exp(z)) | 499 Δv = evalOn(g_3D,(x,y,z) -> -sin(x) - cos(y) + exp(z)) |
500 | 500 |
501 # 2nd order interior stencil, 1st order boundary stencil, | 501 # 2nd order interior stencil, 1st order boundary stencil, |
502 # implies that L*v should be exact for binomials up to order 2. | 502 # implies that L*v should be exact for binomials up to order 2. |
503 @testset "2nd order" begin | 503 @testset "2nd order" begin |
504 L = laplace(g_3D,op2.innerStencil,op2.closureStencils) | 504 L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=2) |
505 @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 | 505 @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 |
506 @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 | 506 @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 |
507 @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 | 507 @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 |
508 @test L*v ≈ Δv rtol = 5e-2 norm = l2 | 508 @test L*v ≈ Δv rtol = 5e-2 norm = l2 |
509 end | 509 end |
510 | 510 |
511 # 4th order interior stencil, 2nd order boundary stencil, | 511 # 4th order interior stencil, 2nd order boundary stencil, |
512 # implies that L*v should be exact for binomials up to order 3. | 512 # implies that L*v should be exact for binomials up to order 3. |
513 @testset "4th order" begin | 513 @testset "4th order" begin |
514 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 514 L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=4) |
515 L = laplace(g_3D,op4.innerStencil,op4.closureStencils) | |
516 # NOTE: high tolerances for checking the "exact" differentiation | 515 # NOTE: high tolerances for checking the "exact" differentiation |
517 # due to accumulation of round-off errors/cancellation errors? | 516 # due to accumulation of round-off errors/cancellation errors? |
518 @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 | 517 @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 |
519 @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 | 518 @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 |
520 @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 | 519 @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 |