comparison src/Grids/equidistant_grid.jl @ 1355:102ebdaf7c11 feature/variable_derivatives

Merge default
author Jonatan Werpers <jonatan@werpers.com>
date Wed, 08 Feb 2023 21:21:28 +0100
parents src/Grids/EquidistantGrid.jl@c4ea28d904f5 src/Grids/EquidistantGrid.jl@dfbd62c7eb09
children 4684c7f1c4cb
comparison
equal deleted inserted replaced
1210:fa0800591306 1355:102ebdaf7c11
1
2 """
3 EquidistantGrid{Dim,T<:Real} <: Grid
4
5 `Dim`-dimensional equidistant grid with coordinates of type `T`.
6 """
7 struct EquidistantGrid{Dim,T<:Real} <: Grid
8 size::NTuple{Dim, Int}
9 limit_lower::NTuple{Dim, T}
10 limit_upper::NTuple{Dim, T}
11
12 function EquidistantGrid{Dim,T}(size::NTuple{Dim, Int}, limit_lower::NTuple{Dim, T}, limit_upper::NTuple{Dim, T}) where {Dim,T}
13 if any(size .<= 0)
14 throw(DomainError("all components of size must be postive"))
15 end
16 if any(limit_upper.-limit_lower .<= 0)
17 throw(DomainError("all side lengths must be postive"))
18 end
19 return new{Dim,T}(size, limit_lower, limit_upper)
20 end
21 end
22
23
24 """
25 EquidistantGrid(size, limit_lower, limit_upper)
26
27 Construct an equidistant grid with corners at the coordinates `limit_lower` and
28 `limit_upper`.
29
30 The length of the domain sides are given by the components of
31 `limit_upper-limit_lower`. E.g for a 2D grid with `limit_lower=(-1,0)` and `limit_upper=(1,2)` the domain is defined
32 as `(-1,1)x(0,2)`. The side lengths of the grid are not allowed to be negative.
33
34 The number of equidistantly spaced points in each coordinate direction are given
35 by the tuple `size`.
36 """
37 function EquidistantGrid(size, limit_lower, limit_upper)
38 return EquidistantGrid{length(size), eltype(limit_lower)}(size, limit_lower, limit_upper)
39 end
40
41
42 """
43 EquidistantGrid{T}()
44
45 Constructs a 0-dimensional grid.
46 """
47 EquidistantGrid{T}() where T = EquidistantGrid{0,T}((),(),()) # Convenience constructor for 0-dim grid
48
49
50 """
51 EquidistantGrid(size::Int, limit_lower::T, limit_upper::T)
52
53 Convenience constructor for 1D grids.
54 """
55 function EquidistantGrid(size::Int, limit_lower::T, limit_upper::T) where T
56 return EquidistantGrid((size,),(limit_lower,),(limit_upper,))
57 end
58
59 Base.eltype(grid::EquidistantGrid{Dim,T}) where {Dim,T} = T
60
61 Base.eachindex(grid::EquidistantGrid) = CartesianIndices(grid.size)
62
63 Base.size(g::EquidistantGrid) = g.size
64
65 function Base.getindex(g::EquidistantGrid, I::Vararg{Int})
66 h = spacing(g)
67 return g.limit_lower .+ (I.-1).*h
68 end
69
70 Base.getindex(g::EquidistantGrid, I::CartesianIndex) = g[Tuple(I)...]
71 # TBD: Can this method be removed if `EquidistantGrid` is an AbstractArray?
72
73 Base.ndims(::EquidistantGrid{Dim}) where Dim = Dim
74
75 """
76 spacing(grid::EquidistantGrid)
77
78 The spacing between grid points.
79 """
80 spacing(grid::EquidistantGrid) = (grid.limit_upper.-grid.limit_lower)./(grid.size.-1)
81
82
83 """
84 inverse_spacing(grid::EquidistantGrid)
85
86 The reciprocal of the spacing between grid points.
87 """
88 inverse_spacing(grid::EquidistantGrid) = 1 ./ spacing(grid)
89
90
91 """
92 points(grid::EquidistantGrid)
93
94 The point of the grid as an array of tuples with the same dimension as the grid.
95 The points are stored as [(x1,y1), (x1,y2), … (x1,yn);
96 (x2,y1), (x2,y2), … (x2,yn);
97 ⋮ ⋮ ⋮
98 (xm,y1), (xm,y2), … (xm,yn)]
99 """
100 function points(grid::EquidistantGrid)
101 indices = Tuple.(CartesianIndices(grid.size))
102 h = spacing(grid)
103 return broadcast(I -> grid.limit_lower .+ (I.-1).*h, indices)
104 end
105
106
107 """
108 restrict(::EquidistantGrid, dim)
109
110 Pick out given dimensions from the grid and return a grid for them.
111 """
112 function restrict(grid::EquidistantGrid, dim)
113 size = grid.size[dim]
114 limit_lower = grid.limit_lower[dim]
115 limit_upper = grid.limit_upper[dim]
116
117 return EquidistantGrid(size, limit_lower, limit_upper)
118 end
119
120
121 """
122 orthogonal_dims(grid::EquidistantGrid,dim)
123
124 Returns the dimensions of grid orthogonal to that of dim.
125 """
126 function orthogonal_dims(grid::EquidistantGrid, dim)
127 orth_dims = filter(i -> i != dim, dims(grid))
128 if orth_dims == dims(grid)
129 throw(DomainError(string("dimension ",string(dim)," not matching grid")))
130 end
131 return orth_dims
132 end
133
134
135 """
136 boundary_identifiers(::EquidistantGrid)
137
138 Returns a tuple containing the boundary identifiers for the grid, stored as
139 (CartesianBoundary(1,Lower),
140 CartesianBoundary(1,Upper),
141 CartesianBoundary(2,Lower),
142 ...)
143 """
144 boundary_identifiers(g::EquidistantGrid) = (((ntuple(i->(CartesianBoundary{i,Lower}(),CartesianBoundary{i,Upper}()),ndims(g)))...)...,)
145
146
147 """
148 boundary_grid(grid::EquidistantGrid, id::CartesianBoundary)
149
150 Creates the lower-dimensional restriciton of `grid` spanned by the dimensions
151 orthogonal to the boundary specified by `id`. The boundary grid of a 1-dimensional
152 grid is a zero-dimensional grid.
153 """
154 function boundary_grid(grid::EquidistantGrid, id::CartesianBoundary)
155 orth_dims = orthogonal_dims(grid, dim(id))
156 return restrict(grid, orth_dims)
157 end
158 boundary_grid(::EquidistantGrid{1,T},::CartesianBoundary{1}) where T = EquidistantGrid{T}()
159
160
161 """
162 refine(grid::EquidistantGrid, r::Int)
163
164 Refines `grid` by a factor `r`. The factor is applied to the number of
165 intervals which is 1 less than the size of the grid.
166
167 See also: [`coarsen`](@ref)
168 """
169 function refine(grid::EquidistantGrid, r::Int)
170 sz = size(grid)
171 new_sz = (sz .- 1).*r .+ 1
172 return EquidistantGrid{ndims(grid), eltype(grid)}(new_sz, grid.limit_lower, grid.limit_upper)
173 end
174
175
176 """
177 coarsen(grid::EquidistantGrid, r::Int)
178
179 Coarsens `grid` by a factor `r`. The factor is applied to the number of
180 intervals which is 1 less than the size of the grid. If the number of
181 intervals are not divisible by `r` an error is raised.
182
183 See also: [`refine`](@ref)
184 """
185 function coarsen(grid::EquidistantGrid, r::Int)
186 sz = size(grid)
187
188 if !all(n -> (n % r == 0), sz.-1)
189 throw(DomainError(r, "Size minus 1 must be divisible by the ratio."))
190 end
191
192 new_sz = (sz .- 1).÷r .+ 1
193
194 return EquidistantGrid{ndims(grid), eltype(grid)}(new_sz, grid.limit_lower, grid.limit_upper)
195 end