Mercurial > repos > public > sbplib_julia
comparison test/testDiffOps.jl @ 333:01b851161018 refactor/combine_to_one_package
Start converting to one package by moving all the files to their correct location
| author | Jonatan Werpers <jonatan@werpers.com> |
|---|---|
| date | Fri, 25 Sep 2020 13:06:02 +0200 |
| parents | DiffOps/test/runtests.jl@e21dcda55163 |
| children | f4e3e71a4ff4 |
comparison
equal
deleted
inserted
replaced
| 332:535f1bff4bcc | 333:01b851161018 |
|---|---|
| 1 using Test | |
| 2 using Sbplib | |
| 3 using DiffOps | |
| 4 using Grids | |
| 5 using SbpOperators | |
| 6 using RegionIndices | |
| 7 using LazyTensors | |
| 8 | |
| 9 @testset "Laplace2D" begin | |
| 10 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | |
| 11 Lx = 3.5 | |
| 12 Ly = 7.2 | |
| 13 g = EquidistantGrid((42,41), (0.0, 0.0), (Lx,Ly)) | |
| 14 L = Laplace(g, 1., op) | |
| 15 H = quadrature(L) | |
| 16 | |
| 17 f0(x::Float64,y::Float64) = 2. | |
| 18 f1(x::Float64,y::Float64) = x+y | |
| 19 f2(x::Float64,y::Float64) = 1/2*x^2 + 1/2*y^2 | |
| 20 f3(x::Float64,y::Float64) = 1/6*x^3 + 1/6*y^3 | |
| 21 f4(x::Float64,y::Float64) = 1/24*x^4 + 1/24*y^4 | |
| 22 f5(x::Float64,y::Float64) = sin(x) + cos(y) | |
| 23 f5ₓₓ(x::Float64,y::Float64) = -f5(x,y) | |
| 24 | |
| 25 v0 = evalOn(g,f0) | |
| 26 v1 = evalOn(g,f1) | |
| 27 v2 = evalOn(g,f2) | |
| 28 v3 = evalOn(g,f3) | |
| 29 v4 = evalOn(g,f4) | |
| 30 v5 = evalOn(g,f5) | |
| 31 v5ₓₓ = evalOn(g,f5ₓₓ) | |
| 32 | |
| 33 @test L isa TensorOperator{T,2} where T | |
| 34 @test L' isa TensorMapping{T,2,2} where T | |
| 35 | |
| 36 # TODO: Should perhaps set tolerance level for isapporx instead? | |
| 37 # Are these tolerance levels resonable or should tests be constructed | |
| 38 # differently? | |
| 39 equalitytol = 0.5*1e-10 | |
| 40 accuracytol = 0.5*1e-3 | |
| 41 # 4th order interior stencil, 2nd order boundary stencil, | |
| 42 # implies that L*v should be exact for v - monomial up to order 3. | |
| 43 # Exact differentiation is measured point-wise. For other grid functions | |
| 44 # the error is measured in the H-norm. | |
| 45 @test all(abs.(collect(L*v0)) .<= equalitytol) | |
| 46 @test all(abs.(collect(L*v1)) .<= equalitytol) | |
| 47 @test all(collect(L*v2) .≈ v0) # Seems to be more accurate | |
| 48 @test all(abs.((collect(L*v3) - v1)) .<= equalitytol) | |
| 49 e4 = collect(L*v4) - v2 | |
| 50 e5 = collect(L*v5) - v5ₓₓ | |
| 51 @test sum(collect(H*e4.^2)) <= accuracytol | |
| 52 @test sum(collect(H*e5.^2)) <= accuracytol | |
| 53 end | |
| 54 | |
| 55 @testset "Quadrature" begin | |
| 56 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | |
| 57 Lx = 2.3 | |
| 58 Ly = 5.2 | |
| 59 g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) | |
| 60 H = Quadrature(op,g) | |
| 61 v = ones(Float64, size(g)) | |
| 62 | |
| 63 @test H isa TensorOperator{T,2} where T | |
| 64 @test H' isa TensorMapping{T,2,2} where T | |
| 65 @test sum(collect(H*v)) ≈ (Lx*Ly) | |
| 66 @test collect(H*v) == collect(H'*v) | |
| 67 end | |
| 68 | |
| 69 @testset "InverseQuadrature" begin | |
| 70 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | |
| 71 Lx = 7.3 | |
| 72 Ly = 8.2 | |
| 73 g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) | |
| 74 H = Quadrature(op,g) | |
| 75 Hinv = InverseQuadrature(op,g) | |
| 76 v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) | |
| 77 | |
| 78 @test Hinv isa TensorOperator{T,2} where T | |
| 79 @test Hinv' isa TensorMapping{T,2,2} where T | |
| 80 @test collect(Hinv*H*v) ≈ v | |
| 81 @test collect(Hinv*v) == collect(Hinv'*v) | |
| 82 end | |
| 83 | |
| 84 @testset "BoundaryValue" begin | |
| 85 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | |
| 86 g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0)) | |
| 87 | |
| 88 e_w = BoundaryValue(op, g, CartesianBoundary{1,Lower}()) | |
| 89 e_e = BoundaryValue(op, g, CartesianBoundary{1,Upper}()) | |
| 90 e_s = BoundaryValue(op, g, CartesianBoundary{2,Lower}()) | |
| 91 e_n = BoundaryValue(op, g, CartesianBoundary{2,Upper}()) | |
| 92 | |
| 93 v = zeros(Float64, 4, 5) | |
| 94 v[:,5] = [1, 2, 3,4] | |
| 95 v[:,4] = [1, 2, 3,4] | |
| 96 v[:,3] = [4, 5, 6, 7] | |
| 97 v[:,2] = [7, 8, 9, 10] | |
| 98 v[:,1] = [10, 11, 12, 13] | |
| 99 | |
| 100 @test e_w isa TensorMapping{T,2,1} where T | |
| 101 @test e_w' isa TensorMapping{T,1,2} where T | |
| 102 | |
| 103 @test domain_size(e_w, (3,2)) == (2,) | |
| 104 @test domain_size(e_e, (3,2)) == (2,) | |
| 105 @test domain_size(e_s, (3,2)) == (3,) | |
| 106 @test domain_size(e_n, (3,2)) == (3,) | |
| 107 | |
| 108 @test size(e_w'*v) == (5,) | |
| 109 @test size(e_e'*v) == (5,) | |
| 110 @test size(e_s'*v) == (4,) | |
| 111 @test size(e_n'*v) == (4,) | |
| 112 | |
| 113 @test collect(e_w'*v) == [10,7,4,1.0,1] | |
| 114 @test collect(e_e'*v) == [13,10,7,4,4.0] | |
| 115 @test collect(e_s'*v) == [10,11,12,13.0] | |
| 116 @test collect(e_n'*v) == [1,2,3,4.0] | |
| 117 | |
| 118 g_x = [1,2,3,4.0] | |
| 119 g_y = [5,4,3,2,1.0] | |
| 120 | |
| 121 G_w = zeros(Float64, (4,5)) | |
| 122 G_w[1,:] = g_y | |
| 123 | |
| 124 G_e = zeros(Float64, (4,5)) | |
| 125 G_e[4,:] = g_y | |
| 126 | |
| 127 G_s = zeros(Float64, (4,5)) | |
| 128 G_s[:,1] = g_x | |
| 129 | |
| 130 G_n = zeros(Float64, (4,5)) | |
| 131 G_n[:,5] = g_x | |
| 132 | |
| 133 @test size(e_w*g_y) == (UnknownDim,5) | |
| 134 @test size(e_e*g_y) == (UnknownDim,5) | |
| 135 @test size(e_s*g_x) == (4,UnknownDim) | |
| 136 @test size(e_n*g_x) == (4,UnknownDim) | |
| 137 | |
| 138 # These tests should be moved to where they are possible (i.e we know what the grid should be) | |
| 139 @test_broken collect(e_w*g_y) == G_w | |
| 140 @test_broken collect(e_e*g_y) == G_e | |
| 141 @test_broken collect(e_s*g_x) == G_s | |
| 142 @test_broken collect(e_n*g_x) == G_n | |
| 143 end | |
| 144 | |
| 145 @testset "NormalDerivative" begin | |
| 146 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | |
| 147 g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0)) | |
| 148 | |
| 149 d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}()) | |
| 150 d_e = NormalDerivative(op, g, CartesianBoundary{1,Upper}()) | |
| 151 d_s = NormalDerivative(op, g, CartesianBoundary{2,Lower}()) | |
| 152 d_n = NormalDerivative(op, g, CartesianBoundary{2,Upper}()) | |
| 153 | |
| 154 | |
| 155 v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) | |
| 156 v∂x = evalOn(g, (x,y)-> 2*x + y) | |
| 157 v∂y = evalOn(g, (x,y)-> 2*(y-1) + x) | |
| 158 | |
| 159 @test d_w isa TensorMapping{T,2,1} where T | |
| 160 @test d_w' isa TensorMapping{T,1,2} where T | |
| 161 | |
| 162 @test domain_size(d_w, (3,2)) == (2,) | |
| 163 @test domain_size(d_e, (3,2)) == (2,) | |
| 164 @test domain_size(d_s, (3,2)) == (3,) | |
| 165 @test domain_size(d_n, (3,2)) == (3,) | |
| 166 | |
| 167 @test size(d_w'*v) == (6,) | |
| 168 @test size(d_e'*v) == (6,) | |
| 169 @test size(d_s'*v) == (5,) | |
| 170 @test size(d_n'*v) == (5,) | |
| 171 | |
| 172 @test collect(d_w'*v) ≈ v∂x[1,:] | |
| 173 @test collect(d_e'*v) ≈ v∂x[5,:] | |
| 174 @test collect(d_s'*v) ≈ v∂y[:,1] | |
| 175 @test collect(d_n'*v) ≈ v∂y[:,6] | |
| 176 | |
| 177 | |
| 178 d_x_l = zeros(Float64, 5) | |
| 179 d_x_u = zeros(Float64, 5) | |
| 180 for i ∈ eachindex(d_x_l) | |
| 181 d_x_l[i] = op.dClosure[i-1] | |
| 182 d_x_u[i] = -op.dClosure[length(d_x_u)-i] | |
| 183 end | |
| 184 | |
| 185 d_y_l = zeros(Float64, 6) | |
| 186 d_y_u = zeros(Float64, 6) | |
| 187 for i ∈ eachindex(d_y_l) | |
| 188 d_y_l[i] = op.dClosure[i-1] | |
| 189 d_y_u[i] = -op.dClosure[length(d_y_u)-i] | |
| 190 end | |
| 191 | |
| 192 function prod_matrix(x,y) | |
| 193 G = zeros(Float64, length(x), length(y)) | |
| 194 for I ∈ CartesianIndices(G) | |
| 195 G[I] = x[I[1]]*y[I[2]] | |
| 196 end | |
| 197 | |
| 198 return G | |
| 199 end | |
| 200 | |
| 201 g_x = [1,2,3,4.0,5] | |
| 202 g_y = [5,4,3,2,1.0,11] | |
| 203 | |
| 204 G_w = prod_matrix(d_x_l, g_y) | |
| 205 G_e = prod_matrix(d_x_u, g_y) | |
| 206 G_s = prod_matrix(g_x, d_y_l) | |
| 207 G_n = prod_matrix(g_x, d_y_u) | |
| 208 | |
| 209 | |
| 210 @test size(d_w*g_y) == (UnknownDim,6) | |
| 211 @test size(d_e*g_y) == (UnknownDim,6) | |
| 212 @test size(d_s*g_x) == (5,UnknownDim) | |
| 213 @test size(d_n*g_x) == (5,UnknownDim) | |
| 214 | |
| 215 # These tests should be moved to where they are possible (i.e we know what the grid should be) | |
| 216 @test_broken collect(d_w*g_y) ≈ G_w | |
| 217 @test_broken collect(d_e*g_y) ≈ G_e | |
| 218 @test_broken collect(d_s*g_x) ≈ G_s | |
| 219 @test_broken collect(d_n*g_x) ≈ G_n | |
| 220 end | |
| 221 | |
| 222 @testset "BoundaryQuadrature" begin | |
| 223 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | |
| 224 g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0)) | |
| 225 | |
| 226 H_w = BoundaryQuadrature(op, g, CartesianBoundary{1,Lower}()) | |
| 227 H_e = BoundaryQuadrature(op, g, CartesianBoundary{1,Upper}()) | |
| 228 H_s = BoundaryQuadrature(op, g, CartesianBoundary{2,Lower}()) | |
| 229 H_n = BoundaryQuadrature(op, g, CartesianBoundary{2,Upper}()) | |
| 230 | |
| 231 v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) | |
| 232 | |
| 233 function get_quadrature(N) | |
| 234 qc = op.quadratureClosure | |
| 235 q = (qc..., ones(N-2*closuresize(op))..., reverse(qc)...) | |
| 236 @assert length(q) == N | |
| 237 return q | |
| 238 end | |
| 239 | |
| 240 v_w = v[1,:] | |
| 241 v_e = v[10,:] | |
| 242 v_s = v[:,1] | |
| 243 v_n = v[:,11] | |
| 244 | |
| 245 q_x = spacing(g)[1].*get_quadrature(10) | |
| 246 q_y = spacing(g)[2].*get_quadrature(11) | |
| 247 | |
| 248 @test H_w isa TensorOperator{T,1} where T | |
| 249 | |
| 250 @test domain_size(H_w, (3,)) == (3,) | |
| 251 @test domain_size(H_n, (3,)) == (3,) | |
| 252 | |
| 253 @test range_size(H_w, (3,)) == (3,) | |
| 254 @test range_size(H_n, (3,)) == (3,) | |
| 255 | |
| 256 @test size(H_w*v_w) == (11,) | |
| 257 @test size(H_e*v_e) == (11,) | |
| 258 @test size(H_s*v_s) == (10,) | |
| 259 @test size(H_n*v_n) == (10,) | |
| 260 | |
| 261 @test collect(H_w*v_w) ≈ q_y.*v_w | |
| 262 @test collect(H_e*v_e) ≈ q_y.*v_e | |
| 263 @test collect(H_s*v_s) ≈ q_x.*v_s | |
| 264 @test collect(H_n*v_n) ≈ q_x.*v_n | |
| 265 | |
| 266 @test collect(H_w'*v_w) == collect(H_w'*v_w) | |
| 267 @test collect(H_e'*v_e) == collect(H_e'*v_e) | |
| 268 @test collect(H_s'*v_s) == collect(H_s'*v_s) | |
| 269 @test collect(H_n'*v_n) == collect(H_n'*v_n) | |
| 270 end |
