Mercurial > repos > public > sbplib_julia
comparison test/SbpOperators/boundaryops/normal_derivative_test.jl @ 769:0158c3fd521c operator_storage_array_of_table
Merge in default
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 15 Jul 2021 00:06:16 +0200 |
parents | 6114274447f5 |
children | bea2feebbeca |
comparison
equal
deleted
inserted
replaced
768:7c87a33963c5 | 769:0158c3fd521c |
---|---|
1 using Test | |
2 | |
3 using Sbplib.SbpOperators | |
4 using Sbplib.Grids | |
5 using Sbplib.RegionIndices | |
6 using Sbplib.LazyTensors | |
7 | |
8 import Sbplib.SbpOperators.BoundaryOperator | |
9 | |
10 @testset "normal_derivative" begin | |
11 g_1D = EquidistantGrid(11, 0.0, 1.0) | |
12 g_2D = EquidistantGrid((11,12), (0.0, 0.0), (1.0,1.0)) | |
13 @testset "normal_derivative" begin | |
14 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
15 @testset "1D" begin | |
16 d_l = normal_derivative(g_1D, op.dClosure, Lower()) | |
17 @test d_l == normal_derivative(g_1D, op.dClosure, CartesianBoundary{1,Lower}()) | |
18 @test d_l isa BoundaryOperator{T,Lower} where T | |
19 @test d_l isa TensorMapping{T,0,1} where T | |
20 end | |
21 @testset "2D" begin | |
22 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
23 d_w = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}()) | |
24 d_n = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}()) | |
25 Ix = IdentityMapping{Float64}((size(g_2D)[1],)) | |
26 Iy = IdentityMapping{Float64}((size(g_2D)[2],)) | |
27 d_l = normal_derivative(restrict(g_2D,1),op.dClosure,Lower()) | |
28 d_r = normal_derivative(restrict(g_2D,2),op.dClosure,Upper()) | |
29 @test d_w == d_l⊗Iy | |
30 @test d_n == Ix⊗d_r | |
31 @test d_w isa TensorMapping{T,1,2} where T | |
32 @test d_n isa TensorMapping{T,1,2} where T | |
33 end | |
34 end | |
35 @testset "Accuracy" begin | |
36 v = evalOn(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) | |
37 v∂x = evalOn(g_2D, (x,y)-> 2*x + y) | |
38 v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x) | |
39 # TODO: Test for higher order polynomials? | |
40 @testset "2nd order" begin | |
41 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) | |
42 d_w = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}()) | |
43 d_e = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Upper}()) | |
44 d_s = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Lower}()) | |
45 d_n = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}()) | |
46 | |
47 @test d_w*v ≈ v∂x[1,:] atol = 1e-13 | |
48 @test d_e*v ≈ -v∂x[end,:] atol = 1e-13 | |
49 @test d_s*v ≈ v∂y[:,1] atol = 1e-13 | |
50 @test d_n*v ≈ -v∂y[:,end] atol = 1e-13 | |
51 end | |
52 | |
53 @testset "4th order" begin | |
54 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
55 d_w = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}()) | |
56 d_e = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Upper}()) | |
57 d_s = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Lower}()) | |
58 d_n = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}()) | |
59 | |
60 @test d_w*v ≈ v∂x[1,:] atol = 1e-13 | |
61 @test d_e*v ≈ -v∂x[end,:] atol = 1e-13 | |
62 @test d_s*v ≈ v∂y[:,1] atol = 1e-13 | |
63 @test d_n*v ≈ -v∂y[:,end] atol = 1e-13 | |
64 end | |
65 end | |
66 end |