Mercurial > repos > public > sbplib_julia
comparison src/SbpOperators/volumeops/laplace/laplace.jl @ 677:011863b3f24c feature/laplace_opset
Make use of the function boundary_quadrature in Laplace constructor
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Sat, 06 Feb 2021 15:17:18 +0100 |
parents | 2d56a53a1646 |
children | 3cd582257072 |
comparison
equal
deleted
inserted
replaced
676:bf48761c1345 | 677:011863b3f24c |
---|---|
3 Laplace(grid::EquidistantGrid, fn; order) | 3 Laplace(grid::EquidistantGrid, fn; order) |
4 | 4 |
5 Implements the Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a | 5 Implements the Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a |
6 `TensorMapping`. Additionally, `Laplace` stores the quadrature, and boundary | 6 `TensorMapping`. Additionally, `Laplace` stores the quadrature, and boundary |
7 operators relevant for constructing a SBP finite difference scheme as `TensorMapping`s. | 7 operators relevant for constructing a SBP finite difference scheme as `TensorMapping`s. |
8 | |
9 Laplace(grid::EquidistantGrid, fn; order) creates the Laplace operator on an | |
10 equidistant grid, where the operators are read from a TOML. The laplace operator | |
11 is created using laplace(grid,...). | |
8 """ | 12 """ |
9 struct Laplace{T, Dim, Rb, TMdiffop<:TensorMapping{T,Dim,Dim}, # Differential operator tensor mapping | 13 struct Laplace{T, Dim, Rb, TMdiffop<:TensorMapping{T,Dim,Dim}, # Differential operator tensor mapping |
10 TMqop<:TensorMapping{T,Dim,Dim}, # Quadrature operator tensor mapping | 14 TMqop<:TensorMapping{T,Dim,Dim}, # Quadrature operator tensor mapping |
11 TMbop<:TensorMapping{T,Rb,Dim}, # Boundary operator tensor mapping | 15 TMbop<:TensorMapping{T,Rb,Dim}, # Boundary operator tensor mapping |
12 TMbqop<:TensorMapping{T,Rb,Rb}, # Boundary quadrature tensor mapping | 16 TMbqop<:TensorMapping{T,Rb,Rb}, # Boundary quadrature tensor mapping |
31 e_closure_stencil = op.eClosure | 35 e_closure_stencil = op.eClosure |
32 d_closure_stencil = op.dClosure | 36 d_closure_stencil = op.dClosure |
33 | 37 |
34 # Volume operators | 38 # Volume operators |
35 Δ = laplace(grid, D_inner_stecil, D_closure_stencils) | 39 Δ = laplace(grid, D_inner_stecil, D_closure_stencils) |
36 H = DiagonalQuadrature(grid, H_closure_stencils) | 40 H = quadrature(grid, H_closure_stencils) |
37 H⁻¹ = InverseDiagonalQuadrature(grid, H_closure_stencils) | 41 H⁻¹ = InverseDiagonalQuadrature(grid, H_closure_stencils) |
38 | 42 |
39 # Pair operators with boundary ids | 43 # Boundary operator - id pairs |
40 bids = boundary_identifiers(grid) | 44 bids = boundary_identifiers(grid) |
41 # Boundary operators | |
42 e_pairs = ntuple(i -> Pair(bids[i],BoundaryRestriction(grid,e_closure_stencil,bids[i])),length(bids)) | 45 e_pairs = ntuple(i -> Pair(bids[i],BoundaryRestriction(grid,e_closure_stencil,bids[i])),length(bids)) |
43 d_pairs = ntuple(i -> Pair(bids[i],NormalDerivative(grid,d_closure_stencil,bids[i])),length(bids)) | 46 d_pairs = ntuple(i -> Pair(bids[i],NormalDerivative(grid,d_closure_stencil,bids[i])),length(bids)) |
44 # Boundary quadratures are constructed on the lower-dimensional grid defined | 47 Hᵧ_pairs = ntuple(i -> Pair(bids[i],boundary_quadrature(grid,H_closure_stencils,bids[i])),length(bids)) |
45 # by the coordinite directions orthogonal to that of the boundary. | |
46 dims = collect(1:dimension(grid)) | |
47 orth_grids = ntuple(i -> restrict(grid,dims[dims .!= dim(bids[i])]),length(bids)) | |
48 Hᵧ_pairs = ntuple(i -> Pair(bids[i],DiagonalQuadrature(orth_grids[i],H_closure_stencils)),length(bids)) | |
49 | 48 |
50 return Laplace(Δ, H, H⁻¹, Dict(e_pairs), Dict(d_pairs), Dict(Hᵧ_pairs)) | 49 return Laplace(Δ, H, H⁻¹, Dict(e_pairs), Dict(d_pairs), Dict(Hᵧ_pairs)) |
51 end | 50 end |
52 | 51 |
53 LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D) | 52 LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D) |