Mercurial > repos > public > sbplib
changeset 1102:d4c895d4b524 feature/timesteppers
Add skeleton for time.rk.ExplicitSecondOrder
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Tue, 09 Apr 2019 22:17:07 +0200 |
parents | b895037bb701 |
children | aa7850e8f68c |
files | +time/+rk/ExplicitSecondOrder.m |
diffstat | 1 files changed, 119 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+time/+rk/ExplicitSecondOrder.m Tue Apr 09 22:17:07 2019 +0200 @@ -0,0 +1,119 @@ +classdef ExplicitSecondOrder < time.Timestepper + properties + F % RHS of the ODE + dt % Time step + t % Time point + v, vt % Solution state + n % Time level + bt + end + + + methods + % Timesteps v_tt = F(t,v,vt), using the specified ButcherTableau + % from t = t0 with timestep dt and initial conditions v(0) = v0 + function obj = ExplicitSecondOrder(F, dt, t0, v0, v0t, bt) + assertType(bt, 'time.rk.ButcherTableau') + obj.F = F; + obj.dt = dt; + obj.t = t0; + obj.v = v0; + obj.vt = v0t; + obj.n = 0; + + assert(bt.isExplicit()) + obj.bt = bt; + end + + function [v,t] = getV(obj) + v = obj.v; + t = obj.t; + end + + function [vt,t] = getVt(obj) + vt = obj.vt; + t = obj.t; + end + + function obj = step(obj) + s = obj.bt.nStages(); + a = obj.bt.a; + b = obj.bt.b; + c = obj.bt.c; + + t = obj.t; + v = obj.v; + vt = obj.vt; + dt = obj.dt; + + k1 = obj.F(t, v, v_t); + k2 = obj.F(t + 1/2*dt, v + 1/2*dt*v_t, v_t + 1/2*dt*k1); + k3 = obj.F(t + 1/2*dt, v + 1/2*dt*v_t + 1/4*dt^2*k1, v_t + 1/2*dt*k2); + k4 = obj.F(t + dt, v + dt*v_t + 1/2*dt^2*k2, v_t + dt*k3); + + % Compute rates K + K = zeros(length(v), s); + for i = 1:s + U_i = obj.v; + V_i = obj.vt; + for j = 1:i-1 + U_i = U_i % + dt*a(i,j)*K(:,j); + V_i = V_i % + dt*a(i,j)*K(:,j); + end + K(:,i) = F(t+dt*c(i), U_i, V_i); + end + + % Compute updated solution + v_next = v; + vt_next = vt; + for i = 1:s + v_next = v_next % + dt*b(i)*K(:,i); + vt_next = vt_next % + dt*b(i)*K(:,i); + end + + obj.v = v_next; + obj.vt = vt_next; + obj.t = obj.t + obj.dt; + obj.n = obj.n + 1; + end + + + % Returns a vector of time points, including substage points, + % in the time interval [t0, tEnd]. + % The time-step obj.dt is assumed to be aligned with [t0, tEnd] already. + function tvec = timePoints(obj, t0, tEnd) + % TBD: Should this be implemented here or somewhere else? + N = round( (tEnd-t0)/obj.dt ); + tvec = zeros(N*obj.s, 1); + s = obj.coeffs.s; + c = obj.coeffs.c; + for i = 1:N + ind = (i-1)*s+1 : i*s; + tvec(ind) = ((i-1) + c')*obj.dt; + end + end + + % Returns a vector of quadrature weights corresponding to grid points + % in time interval [t0, tEnd], substage points included. + % The time-step obj.dt is assumed to be aligned with [t0, tEnd] already. + function weights = quadWeights(obj, t0, tEnd) + % TBD: Should this be implemented here or somewhere else? + N = round( (tEnd-t0)/obj.dt ); + b = obj.coeffs.b; + weights = repmat(b', N, 1); + end + end + + methods(Static) + % TBD: Function name + function ts = methodFromStr(F, dt, t0, v0, methodStr) + try + bt = time.rk.ButcherTableau.(method); + catch + error('Runge-Kutta method ''%s'' is not implemented', methodStr) + end + + ts = time.rk.Explicit(F, dt, t0, v0, bt); + end + end +end