view +time/+rk/ExplicitSecondOrder.m @ 1102:d4c895d4b524 feature/timesteppers

Add skeleton for time.rk.ExplicitSecondOrder
author Jonatan Werpers <jonatan@werpers.com>
date Tue, 09 Apr 2019 22:17:07 +0200
parents
children
line wrap: on
line source

classdef ExplicitSecondOrder < time.Timestepper
    properties
        F       % RHS of the ODE
        dt      % Time step
        t       % Time point
        v, vt    % Solution state
        n       % Time level
        bt
    end


    methods
        % Timesteps v_tt = F(t,v,vt), using the specified ButcherTableau
        % from t = t0 with timestep dt and initial conditions v(0) = v0
        function obj = ExplicitSecondOrder(F, dt, t0, v0, v0t, bt)
            assertType(bt, 'time.rk.ButcherTableau')
            obj.F = F;
            obj.dt = dt;
            obj.t = t0;
            obj.v = v0;
            obj.vt = v0t;
            obj.n = 0;

            assert(bt.isExplicit())
            obj.bt = bt;
        end

        function [v,t] = getV(obj)
            v = obj.v;
            t = obj.t;
        end

        function [vt,t] = getVt(obj)
            vt = obj.vt;
            t = obj.t;
        end

        function obj = step(obj)
            s = obj.bt.nStages();
            a = obj.bt.a;
            b = obj.bt.b;
            c = obj.bt.c;

            t = obj.t;
            v = obj.v;
            vt = obj.vt;
            dt = obj.dt;

            k1 = obj.F(t,          v,                            v_t);
            k2 = obj.F(t + 1/2*dt, v + 1/2*dt*v_t,               v_t + 1/2*dt*k1);
            k3 = obj.F(t + 1/2*dt, v + 1/2*dt*v_t + 1/4*dt^2*k1, v_t + 1/2*dt*k2);
            k4 = obj.F(t + dt,     v + dt*v_t + 1/2*dt^2*k2,     v_t + dt*k3);

            % Compute rates K
            K = zeros(length(v), s);
            for i = 1:s
            	U_i = obj.v;
                V_i = obj.vt;
                for j = 1:i-1
                    U_i = U_i % + dt*a(i,j)*K(:,j);
                    V_i = V_i % + dt*a(i,j)*K(:,j);
                end
                K(:,i) = F(t+dt*c(i), U_i, V_i);
            end

            % Compute updated solution
            v_next = v;
            vt_next = vt;
            for i = 1:s
                v_next  = v_next % + dt*b(i)*K(:,i);
                vt_next = vt_next % + dt*b(i)*K(:,i);
            end

            obj.v  = v_next;
            obj.vt = vt_next;
            obj.t = obj.t + obj.dt;
            obj.n = obj.n + 1;
        end


        % Returns a vector of time points, including substage points,
        % in the time interval [t0, tEnd].
        % The time-step obj.dt is assumed to be aligned with [t0, tEnd] already.
        function tvec = timePoints(obj, t0, tEnd)
            % TBD: Should this be implemented here or somewhere else?
            N = round( (tEnd-t0)/obj.dt );
            tvec = zeros(N*obj.s, 1);
            s = obj.coeffs.s;
            c = obj.coeffs.c;
            for i = 1:N
                ind = (i-1)*s+1 : i*s;
                tvec(ind) = ((i-1) + c')*obj.dt;
            end
        end

        % Returns a vector of quadrature weights corresponding to grid points
        % in time interval [t0, tEnd], substage points included.
        % The time-step obj.dt is assumed to be aligned with [t0, tEnd] already.
        function weights = quadWeights(obj, t0, tEnd)
            % TBD: Should this be implemented here or somewhere else?
            N = round( (tEnd-t0)/obj.dt );
            b = obj.coeffs.b;
            weights = repmat(b', N, 1);
        end
    end

    methods(Static)
        % TBD: Function name
        function ts = methodFromStr(F, dt, t0, v0, methodStr)
            try
                bt = time.rk.ButcherTableau.(method);
            catch
                error('Runge-Kutta method ''%s'' is not implemented', methodStr)
            end

            ts = time.rk.Explicit(F, dt, t0, v0, bt);
        end
    end
end