changeset 680:cd1a76c38565 feature/poroelastic

Remove schemes elasticDilation and elasticShear because they are subsets of elastic.
author Martin Almquist <malmquist@stanford.edu>
date Mon, 05 Feb 2018 14:58:48 -0800
parents 247b58a4dbe8
children 7368affc8f78
files +scheme/elasticDilationVariable.m +scheme/elasticShearVariable.m
diffstat 2 files changed, 0 insertions(+), 747 deletions(-) [+]
line wrap: on
line diff
--- a/+scheme/elasticDilationVariable.m	Mon Feb 05 14:45:26 2018 -0800
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,341 +0,0 @@
-classdef elasticDilationVariable < scheme.Scheme
-    properties
-        m % Number of points in each direction, possibly a vector
-        h % Grid spacing
-
-        grid
-        dim
-
-        order % Order accuracy for the approximation
-
-        A % Variable coefficient lambda of the operator (as diagonal matrix here)
-        RHO, RHOi % Density (as diagonal matrix here)
-
-        D % Total operator
-        D1 % First derivatives
-        D2 % Second derivatives
-        Div % Divergence operator used for BC
-        H, Hi % Inner products
-        phi % Borrowing constant for (d1 - e^T*D1) from R
-        H11 % First element of H
-        e_l, e_r
-        d1_l, d1_r % Normal derivatives at the boundary
-        E % E{i}^T picks out component i
-        
-        H_boundary % Boundary inner products
-
-        A_boundary_l % Variable coefficient at boundaries
-        A_boundary_r % 
-
-        % Kroneckered norms and coefficients
-        RHOi_kron
-        Hi_kron
-    end
-
-    methods
-        % Implements the shear part of the elastic wave equation, i.e.
-        % rho u_{i,tt} = d_i a d_j u_j + d_j a d_j u_i
-        % where a = mu.
-
-        function obj = elasticDilationVariable(g ,order, a_fun, rho_fun, opSet)
-            default_arg('opSet',@sbp.D2Variable);
-            default_arg('a_fun', @(x,y) 0*x+1);
-            default_arg('rho_fun', @(x,y) 0*x+1);
-            dim = 2;
-
-            assert(isa(g, 'grid.Cartesian'))
-
-            a = grid.evalOn(g, a_fun);
-            rho = grid.evalOn(g, rho_fun);
-            m = g.size();
-            m_tot = g.N();
-
-            h = g.scaling();
-            L = (m-1).*h;
-
-            % 1D operators
-            ops = cell(dim,1);
-            for i = 1:dim
-                ops{i} = opSet(m(i), {0, L(i)}, order);
-            end
-
-            % Borrowing constants
-            beta = ops{1}.borrowing.R.delta_D;
-            obj.H11 = ops{1}.borrowing.H11;
-            obj.phi = beta/obj.H11;
-
-            I = cell(dim,1);
-            D1 = cell(dim,1);
-            D2 = cell(dim,1);
-            H = cell(dim,1);
-            Hi = cell(dim,1);
-            e_l = cell(dim,1);
-            e_r = cell(dim,1);
-            d1_l = cell(dim,1);
-            d1_r = cell(dim,1);
-
-            for i = 1:dim
-                I{i} = speye(m(i));
-                D1{i} = ops{i}.D1;
-                D2{i} = ops{i}.D2;
-                H{i} =  ops{i}.H;
-                Hi{i} = ops{i}.HI;
-                e_l{i} = ops{i}.e_l;
-                e_r{i} = ops{i}.e_r;
-                d1_l{i} = ops{i}.d1_l;
-                d1_r{i} = ops{i}.d1_r;
-            end
-
-            %====== Assemble full operators ========
-            A = spdiag(a);
-            obj.A = A;
-            RHO = spdiag(rho);
-            obj.RHO = RHO;
-            obj.RHOi = inv(RHO);
-
-            obj.D1 = cell(dim,1);
-            obj.D2 = cell(dim,1);
-            obj.e_l = cell(dim,1);
-            obj.e_r = cell(dim,1);
-            obj.d1_l = cell(dim,1);
-            obj.d1_r = cell(dim,1);
-
-            % D1
-            obj.D1{1} = kron(D1{1},I{2});
-            obj.D1{2} = kron(I{1},D1{2});
-
-            % Boundary operators
-            obj.e_l{1} = kron(e_l{1},I{2});
-            obj.e_l{2} = kron(I{1},e_l{2});
-            obj.e_r{1} = kron(e_r{1},I{2});
-            obj.e_r{2} = kron(I{1},e_r{2});
-
-            obj.d1_l{1} = kron(d1_l{1},I{2});
-            obj.d1_l{2} = kron(I{1},d1_l{2});
-            obj.d1_r{1} = kron(d1_r{1},I{2});
-            obj.d1_r{2} = kron(I{1},d1_r{2});
-
-            % D2
-            for i = 1:dim
-                obj.D2{i} = sparse(m_tot);
-            end
-            ind = grid.funcToMatrix(g, 1:m_tot);
-
-            for i = 1:m(2)
-                D = D2{1}(a(ind(:,i)));
-                p = ind(:,i);
-                obj.D2{1}(p,p) = D;
-            end
-
-            for i = 1:m(1)
-                D = D2{2}(a(ind(i,:)));
-                p = ind(i,:);
-                obj.D2{2}(p,p) = D;
-            end
-
-            % Quadratures
-            obj.H = kron(H{1},H{2});
-            obj.Hi = inv(obj.H);
-            obj.H_boundary = cell(dim,1);
-            obj.H_boundary{1} = H{2};
-            obj.H_boundary{2} = H{1};
-
-            % Boundary coefficient matrices and quadratures
-            obj.A_boundary_l = cell(dim,1);
-            obj.A_boundary_r = cell(dim,1);
-            for i = 1:dim
-                obj.A_boundary_l{i} = obj.e_l{i}'*A*obj.e_l{i};
-                obj.A_boundary_r{i} = obj.e_r{i}'*A*obj.e_r{i};
-            end
-
-            % E{i}^T picks out component i.
-            E = cell(dim,1);
-            I = speye(m_tot,m_tot);
-            for i = 1:dim
-                e = sparse(dim,1);
-                e(i) = 1;
-                E{i} = kron(I,e);
-            end
-            obj.E = E;
-
-            % Differentiation matrix D (without SAT)
-            D2 = obj.D2;
-            D1 = obj.D1;
-            D = sparse(dim*m_tot,dim*m_tot);
-            d = @kroneckerDelta;    % Kronecker delta
-            db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta
-            for i = 1:dim
-                for j = 1:dim
-                    D = D + E{i}*inv(RHO)*( d(i,j)*D2{i}*E{j}' +...
-                                            db(i,j)*D1{i}*A*D1{j}*E{j}' ...
-                                          );
-                end
-            end
-            obj.D = D;
-            %=========================================%
-
-            % Divergence operator for BC
-            Div = cell(dim,1);
-            % Loop over boundaries
-            for i = 1:dim
-                Div{i} = sparse(m_tot,dim*m_tot);
-                % Loop over components
-                for j = 1:dim
-                    Div{i} = Div{i} + d(i,j)*(obj.e_l{i}*obj.d1_l{i}' + obj.e_r{i}*obj.d1_r{i}')*E{j}' ...
-                              + db(i,j)*obj.D1{j}*E{j}';
-                end
-            end
-            obj.Div = Div;
-
-            % Kroneckered norms and coefficients
-            I_dim = speye(dim);
-            obj.RHOi_kron = kron(obj.RHOi, I_dim);
-            obj.Hi_kron = kron(obj.Hi, I_dim);
-
-            % Misc.
-            obj.m = m;
-            obj.h = h;
-            obj.order = order;
-            obj.grid = g;
-            obj.dim = dim;
-
-        end
-
-
-        % Closure functions return the operators applied to the own domain to close the boundary
-        % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin.
-        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
-        %       type                is a string specifying the type of boundary condition if there are several.
-        %       data                is a function returning the data that should be applied at the boundary.
-        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
-        %       neighbour_boundary  is a string specifying which boundary to interface to.
-        function [closure, penalty] = boundary_condition(obj, boundary, type, parameter)
-            default_arg('type','free');
-            default_arg('parameter', []);
-
-            % j is the coordinate direction of the boundary
-            % nj: outward unit normal component. 
-            % nj = -1 for west, south, bottom boundaries
-            % nj = 1  for east, north, top boundaries
-            [j, nj] = obj.get_boundary_number(boundary);
-            switch nj
-            case 1
-                e = obj.e_r;
-                d = obj.d1_r;
-            case -1
-                e = obj.e_l;
-                d = obj.d1_l;
-            end
-
-            E = obj.E;
-            Hi = obj.Hi;
-            H_gamma = obj.H_boundary{j};
-            A = obj.A;
-            RHOi = obj.RHOi;
-
-            phi = obj.phi;
-            H11 = obj.H11;
-            h = obj.h;
-
-            RHOi_kron = obj.RHOi_kron;
-            Hi_kron = obj.Hi_kron;
-
-            % Divergence operator
-            Div = obj.Div{j};
-
-            switch type
-                % Dirichlet boundary condition
-                case {'D','d','dirichlet'}
-                    tuning = 1.2;
-                    phi = obj.phi;
-
-                    sigma = tuning * obj.dim/(H11*h(j)) +...
-                            tuning * 1/(H11*h(j)*phi);
-
-                    closure = - sigma*E{j}*RHOi*Hi*A*e{j}*H_gamma*e{j}'*E{j}' ... 
-                              + nj*RHOi_kron*Hi_kron*Div'*A*e{j}*H_gamma*e{j}'*E{j}';
-
-                    penalty = + sigma*E{j}*RHOi*Hi*A*e{j}*H_gamma ... 
-                              - nj*RHOi_kron*Hi_kron*Div'*A*e{j}*H_gamma;
-
-                % Free boundary condition
-                case {'F','f','Free','free'}
-
-                    closure = -nj*E{j}*RHOi*Hi*e{j} ...
-                                 *H_gamma*e{j}'*A*e{j}*e{j}'*Div;
-                    penalty = nj*E{j}*RHOi*Hi*e{j} ...
-                                 *H_gamma*e{j}'*A*e{j};
-
-
-                % Unknown boundary condition
-                otherwise
-                    error('No such boundary condition: type = %s',type);
-            end
-        end
-
-        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
-            % u denotes the solution in the own domain
-            % v denotes the solution in the neighbour domain
-            tuning = 1.2;
-            % tuning = 20.2;
-            error('Interface not implemented');
-        end
-
-        % Returns the coordinate number and outward normal component for the boundary specified by the string boundary.
-        function [j, nj] = get_boundary_number(obj, boundary)
-
-            switch boundary
-                case {'w','W','west','West', 'e', 'E', 'east', 'East'}
-                    j = 1;
-                case {'s','S','south','South', 'n', 'N', 'north', 'North'}
-                    j = 2;
-                otherwise
-                    error('No such boundary: boundary = %s',boundary);
-            end
-
-            switch boundary
-                case {'w','W','west','West','s','S','south','South'}
-                    nj = -1;
-                case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
-                    nj = 1;
-            end
-        end
-
-        % Returns the coordinate number and outward normal component for the boundary specified by the string boundary.
-        function [return_op] = get_boundary_operator(obj, op, boundary)
-
-            switch boundary
-                case {'w','W','west','West', 'e', 'E', 'east', 'East'}
-                    j = 1;
-                case {'s','S','south','South', 'n', 'N', 'north', 'North'}
-                    j = 2;
-                otherwise
-                    error('No such boundary: boundary = %s',boundary);
-            end
-
-            switch op
-                case 'e'
-                    switch boundary
-                        case {'w','W','west','West','s','S','south','South'}
-                            return_op = obj.e_l{j};
-                        case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
-                            return_op = obj.e_r{j};
-                    end
-                case 'd'
-                    switch boundary
-                        case {'w','W','west','West','s','S','south','South'}
-                            return_op = obj.d_l{j};
-                        case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
-                            return_op = obj.d_r{j};
-                    end
-                otherwise
-                    error(['No such operator: operatr = ' op]);
-            end
-
-        end
-
-        function N = size(obj)
-            N = prod(obj.m);
-        end
-    end
-end
--- a/+scheme/elasticShearVariable.m	Mon Feb 05 14:45:26 2018 -0800
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,406 +0,0 @@
-classdef elasticShearVariable < scheme.Scheme
-    properties
-        m % Number of points in each direction, possibly a vector
-        h % Grid spacing
-
-        grid
-        dim
-
-        order % Order accuracy for the approximation
-
-        A % Variable coefficient mu of the operator (as diagonal matrix here)
-        RHO % Density (as diagonal matrix here)
-
-        D % Total operator
-        D1 % First derivatives
-        D2 % Second derivatives
-        H, Hi % Inner products
-        phi % Borrowing constant for (d1 - e^T*D1) from R
-        gamma % Borrowing constant for d1 from M
-        H11 % First element of H
-        e_l, e_r
-        d1_l, d1_r % Normal derivatives at the boundary
-        E % E{i}^T picks out component i
-        
-        H_boundary % Boundary inner products
-
-        A_boundary_l % Variable coefficient at boundaries
-        A_boundary_r % 
-    end
-
-    methods
-        % Implements the shear part of the elastic wave equation, i.e.
-        % rho u_{i,tt} = d_i a d_j u_j + d_j a d_j u_i
-        % where a = mu.
-
-        function obj = elasticShearVariable(g ,order, a_fun, rho_fun, opSet)
-            default_arg('opSet',@sbp.D2Variable);
-            default_arg('a_fun', @(x,y) 0*x+1);
-            default_arg('rho_fun', @(x,y) 0*x+1);
-            dim = 2;
-
-            assert(isa(g, 'grid.Cartesian'))
-
-            a = grid.evalOn(g, a_fun);
-            rho = grid.evalOn(g, rho_fun);
-            m = g.size();
-            m_tot = g.N();
-
-            h = g.scaling();
-            L = (m-1).*h;
-
-            % 1D operators
-            ops = cell(dim,1);
-            for i = 1:dim
-                ops{i} = opSet(m(i), {0, L(i)}, order);
-            end
-
-            % Borrowing constants
-            beta = ops{1}.borrowing.R.delta_D;
-            obj.H11 = ops{1}.borrowing.H11;
-            obj.phi = beta/obj.H11;
-            obj.gamma = ops{1}.borrowing.M.d1;
-
-            I = cell(dim,1);
-            D1 = cell(dim,1);
-            D2 = cell(dim,1);
-            H = cell(dim,1);
-            Hi = cell(dim,1);
-            e_l = cell(dim,1);
-            e_r = cell(dim,1);
-            d1_l = cell(dim,1);
-            d1_r = cell(dim,1);
-
-            for i = 1:dim
-                I{i} = speye(m(i));
-                D1{i} = ops{i}.D1;
-                D2{i} = ops{i}.D2;
-                H{i} =  ops{i}.H;
-                Hi{i} = ops{i}.HI;
-                e_l{i} = ops{i}.e_l;
-                e_r{i} = ops{i}.e_r;
-                d1_l{i} = ops{i}.d1_l;
-                d1_r{i} = ops{i}.d1_r;
-            end
-
-            %====== Assemble full operators ========
-            A = spdiag(a);
-            obj.A = A;
-            RHO = spdiag(rho);
-            obj.RHO = RHO;
-
-
-            obj.D1 = cell(dim,1);
-            obj.D2 = cell(dim,1);
-            obj.e_l = cell(dim,1);
-            obj.e_r = cell(dim,1);
-            obj.d1_l = cell(dim,1);
-            obj.d1_r = cell(dim,1);
-
-            % D1
-            obj.D1{1} = kron(D1{1},I{2});
-            obj.D1{2} = kron(I{1},D1{2});
-
-            % Boundary operators
-            obj.e_l{1} = kron(e_l{1},I{2});
-            obj.e_l{2} = kron(I{1},e_l{2});
-            obj.e_r{1} = kron(e_r{1},I{2});
-            obj.e_r{2} = kron(I{1},e_r{2});
-
-            obj.d1_l{1} = kron(d1_l{1},I{2});
-            obj.d1_l{2} = kron(I{1},d1_l{2});
-            obj.d1_r{1} = kron(d1_r{1},I{2});
-            obj.d1_r{2} = kron(I{1},d1_r{2});
-
-            % D2
-            for i = 1:dim
-                obj.D2{i} = sparse(m_tot);
-            end
-            ind = grid.funcToMatrix(g, 1:m_tot);
-
-            for i = 1:m(2)
-                D = D2{1}(a(ind(:,i)));
-                p = ind(:,i);
-                obj.D2{1}(p,p) = D;
-            end
-
-            for i = 1:m(1)
-                D = D2{2}(a(ind(i,:)));
-                p = ind(i,:);
-                obj.D2{2}(p,p) = D;
-            end
-
-            % Quadratures
-            obj.H = kron(H{1},H{2});
-            obj.Hi = inv(obj.H);
-            obj.H_boundary = cell(dim,1);
-            obj.H_boundary{1} = H{2};
-            obj.H_boundary{2} = H{1};
-
-            % Boundary coefficient matrices and quadratures
-            obj.A_boundary_l = cell(dim,1);
-            obj.A_boundary_r = cell(dim,1);
-            for i = 1:dim
-                obj.A_boundary_l{i} = obj.e_l{i}'*A*obj.e_l{i};
-                obj.A_boundary_r{i} = obj.e_r{i}'*A*obj.e_r{i};
-            end
-
-            % E{i}^T picks out component i.
-            E = cell(dim,1);
-            I = speye(m_tot,m_tot);
-            for i = 1:dim
-                e = sparse(dim,1);
-                e(i) = 1;
-                E{i} = kron(I,e);
-            end
-            obj.E = E;
-
-            % Differentiation matrix D (without SAT)
-            D2 = obj.D2;
-            D1 = obj.D1;
-            D = sparse(dim*m_tot,dim*m_tot);
-            d = @kroneckerDelta;    % Kronecker delta
-            db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta
-            for i = 1:dim
-                for j = 1:dim
-                    D = D + E{i}*inv(RHO)*( d(i,j)*D2{i}*E{j}' +...
-                                            db(i,j)*D1{j}*A*D1{i}*E{j}' + ...
-                                            D2{j}*E{i}' ...
-                                          );
-                end
-            end
-            obj.D = D;
-            %=========================================%
-
-            % Misc.
-            obj.m = m;
-            obj.h = h;
-            obj.order = order;
-            obj.grid = g;
-            obj.dim = dim;
-
-            % obj.gamm_u = h_u*ops_u.borrowing.M.d1;
-            % obj.gamm_v = h_v*ops_v.borrowing.M.d1;
-        end
-
-
-        % Closure functions return the operators applied to the own domain to close the boundary
-        % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin.
-        % Here penalty{i,j} enforces data component j on solution component i
-        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
-        %       type                is a string specifying the type of boundary condition if there are several.
-        %       data                is a function returning the data that should be applied at the boundary.
-        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
-        %       neighbour_boundary  is a string specifying which boundary to interface to.
-        function [closure, penalty] = boundary_condition(obj, boundary, type, parameter)
-            default_arg('type','free');
-            default_arg('parameter', []);
-
-            delta = @kroneckerDelta;    % Kronecker delta
-            delta_b = @(i,j) 1-delta(i,j); % Logical not of Kronecker delta
-
-            % j is the coordinate direction of the boundary
-            % nj: outward unit normal component. 
-            % nj = -1 for west, south, bottom boundaries
-            % nj = 1  for east, north, top boundaries
-            [j, nj] = obj.get_boundary_number(boundary);
-            switch nj
-            case 1
-                e = obj.e_r;
-                d = obj.d1_r;
-            case -1
-                e = obj.e_l;
-                d = obj.d1_l;
-            end
-
-            E = obj.E;
-            Hi = obj.Hi;
-            H_gamma = obj.H_boundary{j};
-            A = obj.A;
-            RHO = obj.RHO;
-            D1 = obj.D1;
-
-            phi = obj.phi;
-            gamma = obj.gamma;
-            H11 = obj.H11;
-            h = obj.h;
-
-            switch type
-                % Dirichlet boundary condition
-                case {'D','d','dirichlet'}
-                    tuning = 1.2;
-                    phi = obj.phi;
-
-                    closures = cell(obj.dim,1);
-                    penalties = cell(obj.dim,obj.dim);
-                    % Loop over components
-                    for i = 1:obj.dim
-                        H_gamma_i = obj.H_boundary{i};
-                        sigma_ij = tuning*delta(i,j)*2/(gamma*h(j)) +...
-                                   tuning*delta_b(i,j)*(2/(H11*h(j)) + 1/(H11*h(j)*phi));
-
-                        ci = E{i}*inv(RHO)*nj*Hi*...
-                                ( (e{j}*H_gamma*e{j}'*A*e{j}*d{j}')'*E{i}' + ...
-                                  delta(i,j)*(e{j}*H_gamma*e{j}'*A*e{j}*d{j}')'*E{j}' ...
-                                   ) ...
-                                - sigma_ij*E{i}*inv(RHO)*Hi*A*e{j}*H_gamma*e{j}'*E{i}';
-
-                        cj = E{j}*inv(RHO)*nj*Hi*...
-                                ( delta_b(i,j)*(e{j}*H_gamma*e{j}'*A*D1{i})'*E{i}' ...
-                                   );
-
-                        if isempty(closures{i})
-                            closures{i} = ci;
-                        else
-                            closures{i} = closures{i} + ci;
-                        end
-
-                        if isempty(closures{j})
-                            closures{j} = cj;
-                        else
-                            closures{j} = closures{j} + cj;
-                        end
-   
-                        pii = - E{i}*inv(RHO)*nj*Hi*...
-                                ( (H_gamma*e{j}'*A*e{j}*d{j}')' + ...
-                                  delta(i,j)*(H_gamma*e{j}'*A*e{j}*d{j}')' ...
-                                   ) ...
-                                + sigma_ij*E{i}*inv(RHO)*Hi*A*e{j}*H_gamma;
-
-                        pji = - E{j}*inv(RHO)*nj*Hi*...
-                                ( delta_b(i,j)*(H_gamma*e{j}'*A*D1{i})' );
-
-                        % Dummies
-                        pij = - 0*E{i}*e{j};
-                        pjj = - 0*E{j}*e{j};
-
-                        if isempty(penalties{i,i})
-                            penalties{i,i} = pii;
-                        else
-                            penalties{i,i} = penalties{i,i} + pii;
-                        end
-
-                        if isempty(penalties{j,i})
-                            penalties{j,i} = pji;
-                        else
-                            penalties{j,i} = penalties{j,i} + pji;
-                        end
-
-                        if isempty(penalties{i,j})
-                            penalties{i,j} = pij;
-                        else
-                            penalties{i,j} = penalties{i,j} + pij;
-                        end
-
-                        if isempty(penalties{j,j})
-                            penalties{j,j} = pjj;
-                        else
-                            penalties{j,j} = penalties{j,j} + pjj;
-                        end
-                    end
-                    [rows, cols] = size(closures{1});
-                    closure = sparse(rows, cols);
-                    for i = 1:obj.dim
-                        closure = closure + closures{i};
-                    end
-                    penalty = penalties;
-
-                % Free boundary condition
-                case {'F','f','Free','free'}
-                    closures = cell(obj.dim,1);
-                    penalties = cell(obj.dim,obj.dim);
-                    % Loop over components
-                    for i = 1:obj.dim
-                        closures{i} = E{i}*inv(RHO)*(-nj)*Hi*e{j}*H_gamma*(...
-                                e{j}'*A*e{j}*d{j}'*E{i}' + ...
-                                delta(i,j)*e{j}'*A*e{i}*d{i}'*E{j}' + ...
-                                delta_b(i,j)*e{j}'*A*D1{i}*E{j}' ...
-                                );
-                        penalties{i,i} = - E{i}*inv(RHO)*(-nj)*Hi*e{j}*H_gamma;
-                    end
-                    [rows, cols] = size(closures{1});
-                    closure = sparse(rows, cols);
-                    for i = 1:obj.dim
-                        closure = closure + closures{i};
-                        for j = 1:obj.dim
-                            if i~=j
-                                [rows cols] = size(penalties{j,j});
-                                penalties{i,j} = sparse(rows,cols);
-                            end
-                        end
-                    end
-                    penalty = penalties;
-
-
-                % Unknown boundary condition
-                otherwise
-                    error('No such boundary condition: type = %s',type);
-            end
-        end
-
-        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
-            % u denotes the solution in the own domain
-            % v denotes the solution in the neighbour domain
-            tuning = 1.2;
-            % tuning = 20.2;
-            error('Interface not implemented');
-        end
-
-        % Returns the coordinate number and outward normal component for the boundary specified by the string boundary.
-        function [j, nj] = get_boundary_number(obj, boundary)
-
-            switch boundary
-                case {'w','W','west','West', 'e', 'E', 'east', 'East'}
-                    j = 1;
-                case {'s','S','south','South', 'n', 'N', 'north', 'North'}
-                    j = 2;
-                otherwise
-                    error('No such boundary: boundary = %s',boundary);
-            end
-
-            switch boundary
-                case {'w','W','west','West','s','S','south','South'}
-                    nj = -1;
-                case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
-                    nj = 1;
-            end
-        end
-
-        % Returns the coordinate number and outward normal component for the boundary specified by the string boundary.
-        function [return_op] = get_boundary_operator(obj, op, boundary)
-
-            switch boundary
-                case {'w','W','west','West', 'e', 'E', 'east', 'East'}
-                    j = 1;
-                case {'s','S','south','South', 'n', 'N', 'north', 'North'}
-                    j = 2;
-                otherwise
-                    error('No such boundary: boundary = %s',boundary);
-            end
-
-            switch op
-                case 'e'
-                    switch boundary
-                        case {'w','W','west','West','s','S','south','South'}
-                            return_op = obj.e_l{j};
-                        case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
-                            return_op = obj.e_r{j};
-                    end
-                case 'd'
-                    switch boundary
-                        case {'w','W','west','West','s','S','south','South'}
-                            return_op = obj.d_l{j};
-                        case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
-                            return_op = obj.d_r{j};
-                    end
-                otherwise
-                    error(['No such operator: operatr = ' op]);
-            end
-
-        end
-
-        function N = size(obj)
-            N = prod(obj.m);
-        end
-    end
-end