Mercurial > repos > public > sbplib
changeset 950:cab047de7f5d feature/utux2D
Rename *2D schemes to *2d
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 06 Dec 2018 10:32:02 +0100 |
parents | 6d2167719557 |
children | 27ce3f653aa7 |
files | +scheme/Laplace1D.m +scheme/Laplace1d.m +scheme/Utux2D.m +scheme/Utux2d.m |
diffstat | 4 files changed, 454 insertions(+), 454 deletions(-) [+] |
line wrap: on
line diff
--- a/+scheme/Laplace1D.m Wed Dec 05 15:27:44 2018 -0800 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,146 +0,0 @@ -classdef Laplace1D < scheme.Scheme - properties - grid - order % Order accuracy for the approximation - - D % non-stabalized scheme operator - H % Discrete norm - M % Derivative norm - a - - D2 - Hi - e_l - e_r - d_l - d_r - gamm - end - - methods - function obj = Laplace1D(grid, order, a) - default_arg('a', 1); - - assertType(grid, 'grid.Cartesian'); - - ops = sbp.D2Standard(grid.size(), grid.lim{1}, order); - - obj.D2 = sparse(ops.D2); - obj.H = sparse(ops.H); - obj.Hi = sparse(ops.HI); - obj.M = sparse(ops.M); - obj.e_l = sparse(ops.e_l); - obj.e_r = sparse(ops.e_r); - obj.d_l = -sparse(ops.d1_l); - obj.d_r = sparse(ops.d1_r); - - - obj.grid = grid; - obj.order = order; - - obj.a = a; - obj.D = a*obj.D2; - - obj.gamm = grid.h*ops.borrowing.M.S; - end - - - % Closure functions return the opertors applied to the own doamin to close the boundary - % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. - % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. - % type is a string specifying the type of boundary condition if there are several. - % data is a function returning the data that should be applied at the boundary. - % neighbour_scheme is an instance of Scheme that should be interfaced to. - % neighbour_boundary is a string specifying which boundary to interface to. - function [closure, penalty] = boundary_condition(obj,boundary,type,data) - default_arg('type','neumann'); - default_arg('data',0); - - [e,d,s] = obj.get_boundary_ops(boundary); - - switch type - % Dirichlet boundary condition - case {'D','dirichlet'} - tuning = 1.1; - tau1 = -tuning/obj.gamm; - tau2 = 1; - - tau = tau1*e + tau2*d; - - closure = obj.a*obj.Hi*tau*e'; - penalty = obj.a*obj.Hi*tau; - - % Neumann boundary condition - case {'N','neumann'} - tau = -e; - - closure = obj.a*obj.Hi*tau*d'; - penalty = -obj.a*obj.Hi*tau; - - % Unknown, boundary condition - otherwise - error('No such boundary condition: type = %s',type); - end - end - - function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type) - % u denotes the solution in the own domain - % v denotes the solution in the neighbour domain - - [e_u,d_u,s_u] = obj.get_boundary_ops(boundary); - [e_v,d_v,s_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); - - - a_u = obj.a; - a_v = neighbour_scheme.a; - - gamm_u = obj.gamm; - gamm_v = neighbour_scheme.gamm; - - tuning = 1.1; - - tau1 = -(a_u/gamm_u + a_v/gamm_v) * tuning; - tau2 = 1/2*a_u; - sig1 = -1/2; - sig2 = 0; - - tau = tau1*e_u + tau2*d_u; - sig = sig1*e_u + sig2*d_u; - - closure = obj.Hi*( tau*e_u' + sig*a_u*d_u'); - penalty = obj.Hi*(-tau*e_v' + sig*a_v*d_v'); - end - - % Ruturns the boundary ops and sign for the boundary specified by the string boundary. - % The right boundary is considered the positive boundary - function [e,d,s] = get_boundary_ops(obj,boundary) - switch boundary - case 'l' - e = obj.e_l; - d = obj.d_l; - s = -1; - case 'r' - e = obj.e_r; - d = obj.d_r; - s = 1; - otherwise - error('No such boundary: boundary = %s',boundary); - end - end - - function N = size(obj) - N = obj.grid.size(); - end - - end - - methods(Static) - % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u - % and bound_v of scheme schm_v. - % [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l') - function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) - [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); - [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); - end - end -end \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+scheme/Laplace1d.m Thu Dec 06 10:32:02 2018 +0100 @@ -0,0 +1,146 @@ +classdef Laplace1d < scheme.Scheme + properties + grid + order % Order accuracy for the approximation + + D % non-stabalized scheme operator + H % Discrete norm + M % Derivative norm + a + + D2 + Hi + e_l + e_r + d_l + d_r + gamm + end + + methods + function obj = Laplace1d(grid, order, a) + default_arg('a', 1); + + assertType(grid, 'grid.Cartesian'); + + ops = sbp.D2Standard(grid.size(), grid.lim{1}, order); + + obj.D2 = sparse(ops.D2); + obj.H = sparse(ops.H); + obj.Hi = sparse(ops.HI); + obj.M = sparse(ops.M); + obj.e_l = sparse(ops.e_l); + obj.e_r = sparse(ops.e_r); + obj.d_l = -sparse(ops.d1_l); + obj.d_r = sparse(ops.d1_r); + + + obj.grid = grid; + obj.order = order; + + obj.a = a; + obj.D = a*obj.D2; + + obj.gamm = grid.h*ops.borrowing.M.S; + end + + + % Closure functions return the opertors applied to the own doamin to close the boundary + % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. + % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. + % type is a string specifying the type of boundary condition if there are several. + % data is a function returning the data that should be applied at the boundary. + % neighbour_scheme is an instance of Scheme that should be interfaced to. + % neighbour_boundary is a string specifying which boundary to interface to. + function [closure, penalty] = boundary_condition(obj,boundary,type,data) + default_arg('type','neumann'); + default_arg('data',0); + + [e,d,s] = obj.get_boundary_ops(boundary); + + switch type + % Dirichlet boundary condition + case {'D','dirichlet'} + tuning = 1.1; + tau1 = -tuning/obj.gamm; + tau2 = 1; + + tau = tau1*e + tau2*d; + + closure = obj.a*obj.Hi*tau*e'; + penalty = obj.a*obj.Hi*tau; + + % Neumann boundary condition + case {'N','neumann'} + tau = -e; + + closure = obj.a*obj.Hi*tau*d'; + penalty = -obj.a*obj.Hi*tau; + + % Unknown, boundary condition + otherwise + error('No such boundary condition: type = %s',type); + end + end + + function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type) + % u denotes the solution in the own domain + % v denotes the solution in the neighbour domain + + [e_u,d_u,s_u] = obj.get_boundary_ops(boundary); + [e_v,d_v,s_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); + + + a_u = obj.a; + a_v = neighbour_scheme.a; + + gamm_u = obj.gamm; + gamm_v = neighbour_scheme.gamm; + + tuning = 1.1; + + tau1 = -(a_u/gamm_u + a_v/gamm_v) * tuning; + tau2 = 1/2*a_u; + sig1 = -1/2; + sig2 = 0; + + tau = tau1*e_u + tau2*d_u; + sig = sig1*e_u + sig2*d_u; + + closure = obj.Hi*( tau*e_u' + sig*a_u*d_u'); + penalty = obj.Hi*(-tau*e_v' + sig*a_v*d_v'); + end + + % Ruturns the boundary ops and sign for the boundary specified by the string boundary. + % The right boundary is considered the positive boundary + function [e,d,s] = get_boundary_ops(obj,boundary) + switch boundary + case 'l' + e = obj.e_l; + d = obj.d_l; + s = -1; + case 'r' + e = obj.e_r; + d = obj.d_r; + s = 1; + otherwise + error('No such boundary: boundary = %s',boundary); + end + end + + function N = size(obj) + N = obj.grid.size(); + end + + end + + methods(Static) + % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u + % and bound_v of scheme schm_v. + % [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l') + function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) + [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); + [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); + end + end +end \ No newline at end of file
--- a/+scheme/Utux2D.m Wed Dec 05 15:27:44 2018 -0800 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,308 +0,0 @@ -classdef Utux2D < scheme.Scheme - properties - m % Number of points in each direction, possibly a vector - h % Grid spacing - grid % Grid - order % Order accuracy for the approximation - v0 % Initial data - - a % Wave speed a = [a1, a2]; - % Can either be a constant vector or a cell array of function handles. - - H % Discrete norm - H_x, H_y % Norms in the x and y directions - Hi, Hx, Hy, Hxi, Hyi % Kroneckered norms - - % Derivatives - Dx, Dy - - % Boundary operators - e_w, e_e, e_s, e_n - - D % Total discrete operator - end - - - methods - function obj = Utux2D(g ,order, opSet, a) - - default_arg('a',1/sqrt(2)*[1, 1]); - default_arg('opSet',@sbp.D2Standard); - - assertType(g, 'grid.Cartesian'); - if iscell(a) - a1 = grid.evalOn(g, a{1}); - a2 = grid.evalOn(g, a{2}); - a = {spdiag(a1), spdiag(a2)}; - else - a = {a(1), a(2)}; - end - - m = g.size(); - m_x = m(1); - m_y = m(2); - m_tot = g.N(); - - xlim = {g.x{1}(1), g.x{1}(end)}; - ylim = {g.x{2}(1), g.x{2}(end)}; - obj.grid = g; - - % Operator sets - ops_x = opSet(m_x, xlim, order); - ops_y = opSet(m_y, ylim, order); - Ix = speye(m_x); - Iy = speye(m_y); - - % Norms - Hx = ops_x.H; - Hy = ops_y.H; - Hxi = ops_x.HI; - Hyi = ops_y.HI; - - obj.H_x = Hx; - obj.H_y = Hy; - obj.H = kron(Hx,Hy); - obj.Hi = kron(Hxi,Hyi); - obj.Hx = kron(Hx,Iy); - obj.Hy = kron(Ix,Hy); - obj.Hxi = kron(Hxi,Iy); - obj.Hyi = kron(Ix,Hyi); - - % Derivatives - Dx = ops_x.D1; - Dy = ops_y.D1; - obj.Dx = kron(Dx,Iy); - obj.Dy = kron(Ix,Dy); - - % Boundary operators - obj.e_w = kr(ops_x.e_l, Iy); - obj.e_e = kr(ops_x.e_r, Iy); - obj.e_s = kr(Ix, ops_y.e_l); - obj.e_n = kr(Ix, ops_y.e_r); - - obj.m = m; - obj.h = [ops_x.h ops_y.h]; - obj.order = order; - obj.a = a; - obj.D = -(a{1}*obj.Dx + a{2}*obj.Dy); - - end - % Closure functions return the opertors applied to the own domain to close the boundary - % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. - % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. - % type is a string specifying the type of boundary condition if there are several. - % data is a function returning the data that should be applied at the boundary. - % neighbour_scheme is an instance of Scheme that should be interfaced to. - % neighbour_boundary is a string specifying which boundary to interface to. - function [closure, penalty] = boundary_condition(obj,boundary,type) - default_arg('type','dirichlet'); - - sigma = -1; % Scalar penalty parameter - switch boundary - case {'w','W','west','West'} - tau = sigma*obj.a{1}*obj.e_w*obj.H_y; - closure = obj.Hi*tau*obj.e_w'; - - case {'s','S','south','South'} - tau = sigma*obj.a{2}*obj.e_s*obj.H_x; - closure = obj.Hi*tau*obj.e_s'; - end - penalty = -obj.Hi*tau; - - end - - % type Struct that specifies the interface coupling. - % Fields: - % -- couplingType String, type of interface coupling - % % Default: 'upwind'. Other: 'centered' - % -- interpolation: type of interpolation, default 'none' - % -- interpolationDamping: damping on upstream and downstream sides, when using interpolation. - % Default {0,0} gives zero damping. - function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type) - - defaultType.couplingType = 'upwind'; - defaultType.interpolation = 'none'; - defaultType.interpolationDamping = {0,0}; - default_struct('type', defaultType); - - switch type.interpolation - case {'none', ''} - [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type); - case {'op','OP'} - [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type); - otherwise - error('Unknown type of interpolation: %s ', type.interpolation); - end - end - - function [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type) - couplingType = type.couplingType; - - % Get neighbour boundary operator - switch neighbour_boundary - case {'e','E','east','East'} - e_neighbour = neighbour_scheme.e_e; - case {'w','W','west','West'} - e_neighbour = neighbour_scheme.e_w; - case {'n','N','north','North'} - e_neighbour = neighbour_scheme.e_n; - case {'s','S','south','South'} - e_neighbour = neighbour_scheme.e_s; - end - - switch couplingType - - % Upwind coupling (energy dissipation) - case 'upwind' - sigma_ds = -1; %"Downstream" penalty - sigma_us = 0; %"Upstream" penalty - - % Energy-preserving coupling (no energy dissipation) - case 'centered' - sigma_ds = -1/2; %"Downstream" penalty - sigma_us = 1/2; %"Upstream" penalty - - otherwise - error(['Interface coupling type ' couplingType ' is not available.']) - end - - switch boundary - case {'w','W','west','West'} - tau = sigma_ds*obj.a{1}*obj.e_w*obj.H_y; - closure = obj.Hi*tau*obj.e_w'; - penalty = -obj.Hi*tau*e_neighbour'; - case {'e','E','east','East'} - tau = sigma_us*obj.a{1}*obj.e_e*obj.H_y; - closure = obj.Hi*tau*obj.e_e'; - penalty = -obj.Hi*tau*e_neighbour'; - case {'s','S','south','South'} - tau = sigma_ds*obj.a{2}*obj.e_s*obj.H_x; - closure = obj.Hi*tau*obj.e_s'; - penalty = -obj.Hi*tau*e_neighbour'; - case {'n','N','north','North'} - tau = sigma_us*obj.a{2}*obj.e_n*obj.H_x; - closure = obj.Hi*tau*obj.e_n'; - penalty = -obj.Hi*tau*e_neighbour'; - end - - end - - function [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type) - - % User can request special interpolation operators by specifying type.interpOpSet - default_field(type, 'interpOpSet', @sbp.InterpOpsOP); - - interpOpSet = type.interpOpSet; - couplingType = type.couplingType; - interpolationDamping = type.interpolationDamping; - - % Get neighbour boundary operator - switch neighbour_boundary - case {'e','E','east','East'} - e_neighbour = neighbour_scheme.e_e; - case {'w','W','west','West'} - e_neighbour = neighbour_scheme.e_w; - case {'n','N','north','North'} - e_neighbour = neighbour_scheme.e_n; - case {'s','S','south','South'} - e_neighbour = neighbour_scheme.e_s; - end - - switch couplingType - - % Upwind coupling (energy dissipation) - case 'upwind' - sigma_ds = -1; %"Downstream" penalty - sigma_us = 0; %"Upstream" penalty - - % Energy-preserving coupling (no energy dissipation) - case 'centered' - sigma_ds = -1/2; %"Downstream" penalty - sigma_us = 1/2; %"Upstream" penalty - - otherwise - error(['Interface coupling type ' couplingType ' is not available.']) - end - - int_damp_us = interpolationDamping{1}; - int_damp_ds = interpolationDamping{2}; - - % u denotes the solution in the own domain - % v denotes the solution in the neighbour domain - % Find the number of grid points along the interface - switch boundary - case {'w','e'} - m_u = obj.m(2); - case {'s','n'} - m_u = obj.m(1); - end - m_v = size(e_neighbour, 2); - - % Build interpolation operators - intOps = interpOpSet(m_u, m_v, obj.order, neighbour_scheme.order); - Iu2v = intOps.Iu2v; - Iv2u = intOps.Iv2u; - - I_local2neighbour_ds = intOps.Iu2v.bad; - I_local2neighbour_us = intOps.Iu2v.good; - I_neighbour2local_ds = intOps.Iv2u.good; - I_neighbour2local_us = intOps.Iv2u.bad; - - I_back_forth_us = I_neighbour2local_us*I_local2neighbour_us; - I_back_forth_ds = I_neighbour2local_ds*I_local2neighbour_ds; - - - switch boundary - case {'w','W','west','West'} - tau = sigma_ds*obj.a{1}*obj.e_w*obj.H_y; - closure = obj.Hi*tau*obj.e_w'; - penalty = -obj.Hi*tau*I_neighbour2local_ds*e_neighbour'; - - beta = int_damp_ds*obj.a{1}... - *obj.e_w*obj.H_y; - closure = closure + obj.Hi*beta*I_back_forth_ds*obj.e_w' - obj.Hi*beta*obj.e_w'; - case {'e','E','east','East'} - tau = sigma_us*obj.a{1}*obj.e_e*obj.H_y; - closure = obj.Hi*tau*obj.e_e'; - penalty = -obj.Hi*tau*I_neighbour2local_us*e_neighbour'; - - beta = int_damp_us*obj.a{1}... - *obj.e_e*obj.H_y; - closure = closure + obj.Hi*beta*I_back_forth_us*obj.e_e' - obj.Hi*beta*obj.e_e'; - case {'s','S','south','South'} - tau = sigma_ds*obj.a{2}*obj.e_s*obj.H_x; - closure = obj.Hi*tau*obj.e_s'; - penalty = -obj.Hi*tau*I_neighbour2local_ds*e_neighbour'; - - beta = int_damp_ds*obj.a{2}... - *obj.e_s*obj.H_x; - closure = closure + obj.Hi*beta*I_back_forth_ds*obj.e_s' - obj.Hi*beta*obj.e_s'; - case {'n','N','north','North'} - tau = sigma_us*obj.a{2}*obj.e_n*obj.H_x; - closure = obj.Hi*tau*obj.e_n'; - penalty = -obj.Hi*tau*I_neighbour2local_us*e_neighbour'; - - beta = int_damp_us*obj.a{2}... - *obj.e_n*obj.H_x; - closure = closure + obj.Hi*beta*I_back_forth_us*obj.e_n' - obj.Hi*beta*obj.e_n'; - end - - - end - - function N = size(obj) - N = obj.m; - end - - end - - methods(Static) - % Calculates the matrices needed for the inteface coupling between boundary bound_u of scheme schm_u - % and bound_v of scheme schm_v. - % [uu, uv, vv, vu] = inteface_coupling(A,'r',B,'l') - function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) - [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); - [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); - end - end -end \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+scheme/Utux2d.m Thu Dec 06 10:32:02 2018 +0100 @@ -0,0 +1,308 @@ +classdef Utux2d < scheme.Scheme + properties + m % Number of points in each direction, possibly a vector + h % Grid spacing + grid % Grid + order % Order accuracy for the approximation + v0 % Initial data + + a % Wave speed a = [a1, a2]; + % Can either be a constant vector or a cell array of function handles. + + H % Discrete norm + H_x, H_y % Norms in the x and y directions + Hi, Hx, Hy, Hxi, Hyi % Kroneckered norms + + % Derivatives + Dx, Dy + + % Boundary operators + e_w, e_e, e_s, e_n + + D % Total discrete operator + end + + + methods + function obj = Utux2d(g ,order, opSet, a) + + default_arg('a',1/sqrt(2)*[1, 1]); + default_arg('opSet',@sbp.D2Standard); + + assertType(g, 'grid.Cartesian'); + if iscell(a) + a1 = grid.evalOn(g, a{1}); + a2 = grid.evalOn(g, a{2}); + a = {spdiag(a1), spdiag(a2)}; + else + a = {a(1), a(2)}; + end + + m = g.size(); + m_x = m(1); + m_y = m(2); + m_tot = g.N(); + + xlim = {g.x{1}(1), g.x{1}(end)}; + ylim = {g.x{2}(1), g.x{2}(end)}; + obj.grid = g; + + % Operator sets + ops_x = opSet(m_x, xlim, order); + ops_y = opSet(m_y, ylim, order); + Ix = speye(m_x); + Iy = speye(m_y); + + % Norms + Hx = ops_x.H; + Hy = ops_y.H; + Hxi = ops_x.HI; + Hyi = ops_y.HI; + + obj.H_x = Hx; + obj.H_y = Hy; + obj.H = kron(Hx,Hy); + obj.Hi = kron(Hxi,Hyi); + obj.Hx = kron(Hx,Iy); + obj.Hy = kron(Ix,Hy); + obj.Hxi = kron(Hxi,Iy); + obj.Hyi = kron(Ix,Hyi); + + % Derivatives + Dx = ops_x.D1; + Dy = ops_y.D1; + obj.Dx = kron(Dx,Iy); + obj.Dy = kron(Ix,Dy); + + % Boundary operators + obj.e_w = kr(ops_x.e_l, Iy); + obj.e_e = kr(ops_x.e_r, Iy); + obj.e_s = kr(Ix, ops_y.e_l); + obj.e_n = kr(Ix, ops_y.e_r); + + obj.m = m; + obj.h = [ops_x.h ops_y.h]; + obj.order = order; + obj.a = a; + obj.D = -(a{1}*obj.Dx + a{2}*obj.Dy); + + end + % Closure functions return the opertors applied to the own domain to close the boundary + % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. + % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. + % type is a string specifying the type of boundary condition if there are several. + % data is a function returning the data that should be applied at the boundary. + % neighbour_scheme is an instance of Scheme that should be interfaced to. + % neighbour_boundary is a string specifying which boundary to interface to. + function [closure, penalty] = boundary_condition(obj,boundary,type) + default_arg('type','dirichlet'); + + sigma = -1; % Scalar penalty parameter + switch boundary + case {'w','W','west','West'} + tau = sigma*obj.a{1}*obj.e_w*obj.H_y; + closure = obj.Hi*tau*obj.e_w'; + + case {'s','S','south','South'} + tau = sigma*obj.a{2}*obj.e_s*obj.H_x; + closure = obj.Hi*tau*obj.e_s'; + end + penalty = -obj.Hi*tau; + + end + + % type Struct that specifies the interface coupling. + % Fields: + % -- couplingType String, type of interface coupling + % % Default: 'upwind'. Other: 'centered' + % -- interpolation: type of interpolation, default 'none' + % -- interpolationDamping: damping on upstream and downstream sides, when using interpolation. + % Default {0,0} gives zero damping. + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type) + + defaultType.couplingType = 'upwind'; + defaultType.interpolation = 'none'; + defaultType.interpolationDamping = {0,0}; + default_struct('type', defaultType); + + switch type.interpolation + case {'none', ''} + [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type); + case {'op','OP'} + [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type); + otherwise + error('Unknown type of interpolation: %s ', type.interpolation); + end + end + + function [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type) + couplingType = type.couplingType; + + % Get neighbour boundary operator + switch neighbour_boundary + case {'e','E','east','East'} + e_neighbour = neighbour_scheme.e_e; + case {'w','W','west','West'} + e_neighbour = neighbour_scheme.e_w; + case {'n','N','north','North'} + e_neighbour = neighbour_scheme.e_n; + case {'s','S','south','South'} + e_neighbour = neighbour_scheme.e_s; + end + + switch couplingType + + % Upwind coupling (energy dissipation) + case 'upwind' + sigma_ds = -1; %"Downstream" penalty + sigma_us = 0; %"Upstream" penalty + + % Energy-preserving coupling (no energy dissipation) + case 'centered' + sigma_ds = -1/2; %"Downstream" penalty + sigma_us = 1/2; %"Upstream" penalty + + otherwise + error(['Interface coupling type ' couplingType ' is not available.']) + end + + switch boundary + case {'w','W','west','West'} + tau = sigma_ds*obj.a{1}*obj.e_w*obj.H_y; + closure = obj.Hi*tau*obj.e_w'; + penalty = -obj.Hi*tau*e_neighbour'; + case {'e','E','east','East'} + tau = sigma_us*obj.a{1}*obj.e_e*obj.H_y; + closure = obj.Hi*tau*obj.e_e'; + penalty = -obj.Hi*tau*e_neighbour'; + case {'s','S','south','South'} + tau = sigma_ds*obj.a{2}*obj.e_s*obj.H_x; + closure = obj.Hi*tau*obj.e_s'; + penalty = -obj.Hi*tau*e_neighbour'; + case {'n','N','north','North'} + tau = sigma_us*obj.a{2}*obj.e_n*obj.H_x; + closure = obj.Hi*tau*obj.e_n'; + penalty = -obj.Hi*tau*e_neighbour'; + end + + end + + function [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type) + + % User can request special interpolation operators by specifying type.interpOpSet + default_field(type, 'interpOpSet', @sbp.InterpOpsOP); + + interpOpSet = type.interpOpSet; + couplingType = type.couplingType; + interpolationDamping = type.interpolationDamping; + + % Get neighbour boundary operator + switch neighbour_boundary + case {'e','E','east','East'} + e_neighbour = neighbour_scheme.e_e; + case {'w','W','west','West'} + e_neighbour = neighbour_scheme.e_w; + case {'n','N','north','North'} + e_neighbour = neighbour_scheme.e_n; + case {'s','S','south','South'} + e_neighbour = neighbour_scheme.e_s; + end + + switch couplingType + + % Upwind coupling (energy dissipation) + case 'upwind' + sigma_ds = -1; %"Downstream" penalty + sigma_us = 0; %"Upstream" penalty + + % Energy-preserving coupling (no energy dissipation) + case 'centered' + sigma_ds = -1/2; %"Downstream" penalty + sigma_us = 1/2; %"Upstream" penalty + + otherwise + error(['Interface coupling type ' couplingType ' is not available.']) + end + + int_damp_us = interpolationDamping{1}; + int_damp_ds = interpolationDamping{2}; + + % u denotes the solution in the own domain + % v denotes the solution in the neighbour domain + % Find the number of grid points along the interface + switch boundary + case {'w','e'} + m_u = obj.m(2); + case {'s','n'} + m_u = obj.m(1); + end + m_v = size(e_neighbour, 2); + + % Build interpolation operators + intOps = interpOpSet(m_u, m_v, obj.order, neighbour_scheme.order); + Iu2v = intOps.Iu2v; + Iv2u = intOps.Iv2u; + + I_local2neighbour_ds = intOps.Iu2v.bad; + I_local2neighbour_us = intOps.Iu2v.good; + I_neighbour2local_ds = intOps.Iv2u.good; + I_neighbour2local_us = intOps.Iv2u.bad; + + I_back_forth_us = I_neighbour2local_us*I_local2neighbour_us; + I_back_forth_ds = I_neighbour2local_ds*I_local2neighbour_ds; + + + switch boundary + case {'w','W','west','West'} + tau = sigma_ds*obj.a{1}*obj.e_w*obj.H_y; + closure = obj.Hi*tau*obj.e_w'; + penalty = -obj.Hi*tau*I_neighbour2local_ds*e_neighbour'; + + beta = int_damp_ds*obj.a{1}... + *obj.e_w*obj.H_y; + closure = closure + obj.Hi*beta*I_back_forth_ds*obj.e_w' - obj.Hi*beta*obj.e_w'; + case {'e','E','east','East'} + tau = sigma_us*obj.a{1}*obj.e_e*obj.H_y; + closure = obj.Hi*tau*obj.e_e'; + penalty = -obj.Hi*tau*I_neighbour2local_us*e_neighbour'; + + beta = int_damp_us*obj.a{1}... + *obj.e_e*obj.H_y; + closure = closure + obj.Hi*beta*I_back_forth_us*obj.e_e' - obj.Hi*beta*obj.e_e'; + case {'s','S','south','South'} + tau = sigma_ds*obj.a{2}*obj.e_s*obj.H_x; + closure = obj.Hi*tau*obj.e_s'; + penalty = -obj.Hi*tau*I_neighbour2local_ds*e_neighbour'; + + beta = int_damp_ds*obj.a{2}... + *obj.e_s*obj.H_x; + closure = closure + obj.Hi*beta*I_back_forth_ds*obj.e_s' - obj.Hi*beta*obj.e_s'; + case {'n','N','north','North'} + tau = sigma_us*obj.a{2}*obj.e_n*obj.H_x; + closure = obj.Hi*tau*obj.e_n'; + penalty = -obj.Hi*tau*I_neighbour2local_us*e_neighbour'; + + beta = int_damp_us*obj.a{2}... + *obj.e_n*obj.H_x; + closure = closure + obj.Hi*beta*I_back_forth_us*obj.e_n' - obj.Hi*beta*obj.e_n'; + end + + + end + + function N = size(obj) + N = obj.m; + end + + end + + methods(Static) + % Calculates the matrices needed for the inteface coupling between boundary bound_u of scheme schm_u + % and bound_v of scheme schm_v. + % [uu, uv, vv, vu] = inteface_coupling(A,'r',B,'l') + function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) + [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); + [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); + end + end +end \ No newline at end of file