Mercurial > repos > public > sbplib
changeset 652:be941bb0a11a feature/d1_staggered
Add staggered 1D variable coefficient. Convergence study working.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Mon, 04 Dec 2017 11:11:03 -0800 |
parents | 4ee7d15bd8e6 |
children | 2351a7690e8a |
files | +scheme/Staggered1DAcousticsVariable.m |
diffstat | 1 files changed, 230 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+scheme/Staggered1DAcousticsVariable.m Mon Dec 04 11:11:03 2017 -0800 @@ -0,0 +1,230 @@ +classdef Staggered1DAcousticsVariable < scheme.Scheme + properties + m % Number of points of primal grid in each direction, possibly a vector + h % Grid spacing + + % Grids + grid % Total grid object + grid_primal + grid_dual + + order % Order accuracy for the approximation + + H % Combined norm + Hi % Inverse + D % Semi-discrete approximation matrix + + D1_primal + D1_dual + + % Pick out left or right boundary + e_l + e_r + + % Initial data + v0 + + % Pick out primal or dual component + e_primal + e_dual + + % System matrices + A + B + + % + A_l, A_r + B_l, B_r + end + + + methods + % Scheme for A*u_t + B u_x = 0, + % u = [p, v]; + % A: Diagonal and A > 0, + % A = [a1, 0; + % 0, a2] + % + % B = B^T and with diagonal entries = 0. + % B = [0 b + % b 0] + % Here we store p on the primal grid and v on the dual + function obj = Staggered1DAcousticsVariable(g, order, A, B) + default_arg('B',{@(x)0*x, @(x)0*x+1; @(x)0*x+1, @(x)0*x}); + default_arg('A',{@(x)0*x+1, @(x)0*x; @(x)0*x, @(x)0*x+1}); + + obj.order = order; + obj.A = A; + obj.B = B; + + % Grids + obj.m = g.size(); + xl = g.getBoundary('l'); + xr = g.getBoundary('r'); + xlim = {xl, xr}; + + % Boundary matrices + obj.A_l = [A{1,1}(xl), A{1,2}(xl);.... + A{2,1}(xl), A{2,2}(xl)]; + obj.A_r = [A{1,1}(xr), A{1,2}(xr);.... + A{2,1}(xr), A{2,2}(xr)]; + obj.B_l = [B{1,1}(xl), B{1,2}(xl);.... + B{2,1}(xl), B{2,2}(xl)]; + obj.B_r = [B{1,1}(xr), B{1,2}(xr);.... + B{2,1}(xr), B{2,2}(xr)]; + + obj.grid = g; + obj.grid_primal = g.grids{1}; + obj.grid_dual = g.grids{2}; + x_primal = obj.grid_primal.points(); + x_dual = obj.grid_dual.points(); + + % Get operators + ops = sbp.D1StaggeredUpwind(obj.m, xlim, order); + obj.h = ops.h; + + % Build combined operators + H_primal = ops.H_primal; + H_dual = ops.H_dual; + obj.H = blockmatrix.toMatrix( {H_primal, []; [], H_dual } ); + obj.Hi = inv(obj.H); + + D1_primal = ops.D1_primal; + D1_dual = ops.D1_dual; + A11_B12 = spdiag(-1./A{1,1}(x_primal).*B{1,2}(x_primal), 0); + A22_B21 = spdiag(-1./A{2,2}(x_dual).*B{2,1}(x_dual), 0); + D = {[], A11_B12*D1_primal;... + A22_B21*D1_dual, []}; + obj.D = blockmatrix.toMatrix(D); + obj.D1_primal = D1_primal; + obj.D1_dual = D1_dual; + + % Combined boundary operators + e_primal_l = ops.e_primal_l; + e_primal_r = ops.e_primal_r; + e_dual_l = ops.e_dual_l; + e_dual_r = ops.e_dual_r; + e_l = {e_primal_l, [];... + [] , e_dual_l}; + e_r = {e_primal_r, [];... + [] , e_dual_r}; + obj.e_l = blockmatrix.toMatrix(e_l); + obj.e_r = blockmatrix.toMatrix(e_r); + + % Pick out first or second component of solution + N_primal = obj.grid_primal.N(); + N_dual = obj.grid_dual.N(); + obj.e_primal = [speye(N_primal, N_primal); sparse(N_dual, N_primal)]; + obj.e_dual = [sparse(N_primal, N_dual); speye(N_dual, N_dual)]; + + + end + % Closure functions return the operators applied to the own domain to close the boundary + % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other domain. + % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. + % type is a string specifying the type of boundary condition if there are several. + % neighbour_scheme is an instance of Scheme that should be interfaced to. + % neighbour_boundary is a string specifying which boundary to interface to. + function [closure, penalty] = boundary_condition(obj, boundary, type) + + default_arg('type','p'); + + % type = 'p' => boundary condition for p + % type = 'v' => boundary condition for v + % No other types implemented yet + + % BC on the form Lu - g = 0; + + % Get boundary matrices + switch boundary + case 'l' + A = full(obj.A_l); + B = full(obj.B_l); + case 'r' + A = full(obj.A_r); + B = full(obj.B_r); + end + + % Diagonalize B + [T, Lambda] = eig(B); + lambda = diag(Lambda); + + % Identify in- and outgoing characteristic variables + Iplus = lambda > 0; + Iminus = lambda < 0; + + switch boundary + case 'l' + Iout = Iminus; + Iin = Iplus; + case 'r' + Iout = Iplus; + Iin = Iminus; + end + + Tin = T(:,Iin); + Tout = T(:,Iout); + + switch type + case 'p' + L = [1, 0]; + case 'v' + L = [0, 1]; + case 'characteristic' + L = Tin'; + otherwise + error('Boundary condition not implemented.'); + end + + % Penalty parameters + sigma = [0; 0]; + sigma(Iin) = lambda(Iin); + switch boundary + case 'l' + tau = -1*obj.e_l * inv(A) * T * sigma * inv(L*Tin); + closure = obj.Hi*tau*L*obj.e_l'; + + case 'r' + tau = 1*obj.e_r * inv(A) * T * sigma * inv(L*Tin); + closure = obj.Hi*tau*L*obj.e_r'; + + end + + penalty = -obj.Hi*tau; + + end + + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) + + error('Staggered1DAcoustics, interface not implemented'); + + switch boundary + % Upwind coupling + case {'l','left'} + tau = -1*obj.e_l; + closure = obj.Hi*tau*obj.e_l'; + penalty = -obj.Hi*tau*neighbour_scheme.e_r'; + case {'r','right'} + tau = 0*obj.e_r; + closure = obj.Hi*tau*obj.e_r'; + penalty = -obj.Hi*tau*neighbour_scheme.e_l'; + end + + end + + function N = size(obj) + N = obj.m; + end + + end + + methods(Static) + % Calculates the matrices needed for the inteface coupling between boundary bound_u of scheme schm_u + % and bound_v of scheme schm_v. + % [uu, uv, vv, vu] = inteface_coupling(A,'r',B,'l') + function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) + [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); + [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); + end + end +end \ No newline at end of file