Mercurial > repos > public > sbplib
view +scheme/Staggered1DAcousticsVariable.m @ 652:be941bb0a11a feature/d1_staggered
Add staggered 1D variable coefficient. Convergence study working.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Mon, 04 Dec 2017 11:11:03 -0800 |
parents | |
children | 2351a7690e8a |
line wrap: on
line source
classdef Staggered1DAcousticsVariable < scheme.Scheme properties m % Number of points of primal grid in each direction, possibly a vector h % Grid spacing % Grids grid % Total grid object grid_primal grid_dual order % Order accuracy for the approximation H % Combined norm Hi % Inverse D % Semi-discrete approximation matrix D1_primal D1_dual % Pick out left or right boundary e_l e_r % Initial data v0 % Pick out primal or dual component e_primal e_dual % System matrices A B % A_l, A_r B_l, B_r end methods % Scheme for A*u_t + B u_x = 0, % u = [p, v]; % A: Diagonal and A > 0, % A = [a1, 0; % 0, a2] % % B = B^T and with diagonal entries = 0. % B = [0 b % b 0] % Here we store p on the primal grid and v on the dual function obj = Staggered1DAcousticsVariable(g, order, A, B) default_arg('B',{@(x)0*x, @(x)0*x+1; @(x)0*x+1, @(x)0*x}); default_arg('A',{@(x)0*x+1, @(x)0*x; @(x)0*x, @(x)0*x+1}); obj.order = order; obj.A = A; obj.B = B; % Grids obj.m = g.size(); xl = g.getBoundary('l'); xr = g.getBoundary('r'); xlim = {xl, xr}; % Boundary matrices obj.A_l = [A{1,1}(xl), A{1,2}(xl);.... A{2,1}(xl), A{2,2}(xl)]; obj.A_r = [A{1,1}(xr), A{1,2}(xr);.... A{2,1}(xr), A{2,2}(xr)]; obj.B_l = [B{1,1}(xl), B{1,2}(xl);.... B{2,1}(xl), B{2,2}(xl)]; obj.B_r = [B{1,1}(xr), B{1,2}(xr);.... B{2,1}(xr), B{2,2}(xr)]; obj.grid = g; obj.grid_primal = g.grids{1}; obj.grid_dual = g.grids{2}; x_primal = obj.grid_primal.points(); x_dual = obj.grid_dual.points(); % Get operators ops = sbp.D1StaggeredUpwind(obj.m, xlim, order); obj.h = ops.h; % Build combined operators H_primal = ops.H_primal; H_dual = ops.H_dual; obj.H = blockmatrix.toMatrix( {H_primal, []; [], H_dual } ); obj.Hi = inv(obj.H); D1_primal = ops.D1_primal; D1_dual = ops.D1_dual; A11_B12 = spdiag(-1./A{1,1}(x_primal).*B{1,2}(x_primal), 0); A22_B21 = spdiag(-1./A{2,2}(x_dual).*B{2,1}(x_dual), 0); D = {[], A11_B12*D1_primal;... A22_B21*D1_dual, []}; obj.D = blockmatrix.toMatrix(D); obj.D1_primal = D1_primal; obj.D1_dual = D1_dual; % Combined boundary operators e_primal_l = ops.e_primal_l; e_primal_r = ops.e_primal_r; e_dual_l = ops.e_dual_l; e_dual_r = ops.e_dual_r; e_l = {e_primal_l, [];... [] , e_dual_l}; e_r = {e_primal_r, [];... [] , e_dual_r}; obj.e_l = blockmatrix.toMatrix(e_l); obj.e_r = blockmatrix.toMatrix(e_r); % Pick out first or second component of solution N_primal = obj.grid_primal.N(); N_dual = obj.grid_dual.N(); obj.e_primal = [speye(N_primal, N_primal); sparse(N_dual, N_primal)]; obj.e_dual = [sparse(N_primal, N_dual); speye(N_dual, N_dual)]; end % Closure functions return the operators applied to the own domain to close the boundary % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other domain. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj, boundary, type) default_arg('type','p'); % type = 'p' => boundary condition for p % type = 'v' => boundary condition for v % No other types implemented yet % BC on the form Lu - g = 0; % Get boundary matrices switch boundary case 'l' A = full(obj.A_l); B = full(obj.B_l); case 'r' A = full(obj.A_r); B = full(obj.B_r); end % Diagonalize B [T, Lambda] = eig(B); lambda = diag(Lambda); % Identify in- and outgoing characteristic variables Iplus = lambda > 0; Iminus = lambda < 0; switch boundary case 'l' Iout = Iminus; Iin = Iplus; case 'r' Iout = Iplus; Iin = Iminus; end Tin = T(:,Iin); Tout = T(:,Iout); switch type case 'p' L = [1, 0]; case 'v' L = [0, 1]; case 'characteristic' L = Tin'; otherwise error('Boundary condition not implemented.'); end % Penalty parameters sigma = [0; 0]; sigma(Iin) = lambda(Iin); switch boundary case 'l' tau = -1*obj.e_l * inv(A) * T * sigma * inv(L*Tin); closure = obj.Hi*tau*L*obj.e_l'; case 'r' tau = 1*obj.e_r * inv(A) * T * sigma * inv(L*Tin); closure = obj.Hi*tau*L*obj.e_r'; end penalty = -obj.Hi*tau; end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) error('Staggered1DAcoustics, interface not implemented'); switch boundary % Upwind coupling case {'l','left'} tau = -1*obj.e_l; closure = obj.Hi*tau*obj.e_l'; penalty = -obj.Hi*tau*neighbour_scheme.e_r'; case {'r','right'} tau = 0*obj.e_r; closure = obj.Hi*tau*obj.e_r'; penalty = -obj.Hi*tau*neighbour_scheme.e_l'; end end function N = size(obj) N = obj.m; end end methods(Static) % Calculates the matrices needed for the inteface coupling between boundary bound_u of scheme schm_u % and bound_v of scheme schm_v. % [uu, uv, vv, vu] = inteface_coupling(A,'r',B,'l') function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); end end end