changeset 663:b45ec2b28cc2 feature/poroelastic

First implementation of elastic shear operator with free boundary BC.
author Martin Almquist <malmquist@stanford.edu>
date Thu, 14 Dec 2017 13:54:20 -0800
parents b189bc409cdb
children 8e6dfd22fc59
files +scheme/elasticShearVariable.m
diffstat 1 files changed, 273 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/elasticShearVariable.m	Thu Dec 14 13:54:20 2017 -0800
@@ -0,0 +1,273 @@
+classdef elasticShearVariable < scheme.Scheme
+    properties
+        m % Number of points in each direction, possibly a vector
+        h % Grid spacing
+
+        grid
+
+        order % Order accuracy for the approximation
+
+        a % Variable coefficient lambda of the operator
+        rho % Density
+
+        D % Total operator
+        D1 % First derivatives
+        D2 % Second derivatives
+        H, Hi % Inner products
+        e_l, e_r
+        d_l, d_r % Normal derivatives at the boundary
+        H_boundary % Boundary inner products
+    end
+
+    methods
+        % Implements the shear part of the elastic wave equation, i.e.
+        % rho u_{i,tt} = d_i a d_j u_j + d_j a d_j u_i
+        % where a = lambda.
+
+        function obj = elasticShearVariable(g ,order, a_fun, rho_fun, opSet)
+            default_arg('opSet',@sbp.D2Variable);
+            default_arg('a_fun', @(x,y) 0*x+1);
+            default_arg('rho_fun', @(x,y) 0*x+1);
+            dim = 2;
+
+            assert(isa(g, 'grid.Cartesian'))
+
+            a = grid.evalOn(g, a_fun);
+            rho = grid.evalOn(g, rho_fun);
+            m = g.size();
+            m_tot = g.N();
+
+            h = g.scaling();
+
+            % 1D operators
+            ops = cell(dim,1);
+            for i = 1:dim
+                ops{i} = opSet(m(i), {0, 1}, order);
+            end
+
+            I = cell(dim,1);
+            D1 = cell(dim,1);
+            D2 = cell(dim,1);
+            H = cell(dim,1);
+            Hi = cell(dim,1);
+            e_l = cell(dim,1);
+            e_r = cell(dim,1);
+            d1_l = cell(dim,1);
+            d1_r = cell(dim,1);
+
+            for i = 1:dim
+                I{i} = speye{m(i));
+                D1{i} = ops{i}.D1;
+                D2{i} = ops{i}.D2;
+                H{i} =  ops{i}.H;
+                Hi{i} = ops{i}.HI;
+                e_l{i} = ops{i}.e_l;
+                e_r{i} = ops{i}.e_r;
+                d1_l{i} = ops{i}.d1_l;
+                d1_r{i} = ops{i}.d1_r;
+            end
+
+            %====== Assemble full operators ========
+            A = spdiag(a);
+            RHO = spdiag(rho);
+
+            obj.D1 = cell(dim,1);
+            obj.D2 = cell(dim,1);
+            obj.e_l = cell(dim,1);
+            obj.e_r = cell(dim,1);
+            obj.d1_l = cell(dim,1);
+            obj.d1_r = cell(dim,1);
+
+            % D1
+            obj.D1{1} = kron{D1{1},I(2)};
+            obj.D1{2} = kron{I{1},D1(2)};
+
+            % Boundary operators
+            obj.e_l{1} = kron{e_l{1},I(2)};
+            obj.e_l{2} = kron{I{1},e_l(2)};
+            obj.e_r{1} = kron{e_r{1},I(2)};
+            obj.e_r{2} = kron{I{1},e_r(2)};
+
+            obj.d1_l{1} = kron{d1_l{1},I(2)};
+            obj.d1_l{2} = kron{I{1},d1_l(2)};
+            obj.d1_r{1} = kron{d1_r{1},I(2)};
+            obj.d1_r{2} = kron{I{1},d1_r(2)};
+
+            % D2
+            for i = 1:dim
+                obj.D2{i} = sparse(m_tot);
+            end
+            ind = grid.funcToMatrix(g, 1:m_tot);
+
+            for i = 1:m(2)
+                D = D2{1}(a(ind(:,i)));
+                p = ind(:,i);
+                obj.D2{1}(p,p) = D;
+            end
+
+            for i = 1:m(1)
+                D = D2{2}(a(ind(i,:)));
+                p = ind(i,:);
+                obj.D2{2}(p,p) = D;
+            end
+
+            % Quadratures
+            obj.H = kron(H{1},H{2});
+            obj.H_boundary = cell(dim,1);
+            obj.H_boundary{1} = H{2};
+            obj.H_boundary{2} = H{1};
+
+            % Boundary coefficient matrices and quadratures
+            obj.A_boundary_l = cell(dim,1);
+            obj.A_boundary_r = cell(dim,1);
+            for i = 1:dim
+                obj.A_boundary_l{i} = e_l{i}'*A*e_l{i};
+                obj.A_boundary_r{i} = e_r{i}'*A*e_r{i};
+            end
+
+            % E{i}^T picks out component i.
+            E = cell(dim,1);
+            I = speye{mtot,mtot};
+            for i = 1:dim
+                e = sparse(dim,1);
+                e(i) = 1;
+                E{i} = kron(e,I)
+            end
+            obj.E = E;
+
+            % Differentiation matrix D (without SAT)
+            D = 0;
+            d = @kroneckerDelta;    % Kronecker delta
+            db = @(i,j) 1-dij(i,j); % Logical not of Kronecker delta
+            for i = 1:dim
+                for j = 1:dim
+                    D = D + E{i}*inv(rho)*( d(i,j)*D2{i}*E{j}' +...
+                                            db(i,j)*D1{j}*A*D1{i}*E{j}' + ...
+                                            D2{j}*E{i}' ...
+                                          );
+                end
+            end
+            obj.D = D;
+            %=========================================%
+
+            
+
+            % Misc.
+            obj.m = m;
+            obj.h = h;
+            obj.order = order;
+            obj.grid = g;
+
+            obj.a = a;
+            obj.b = b;
+
+            % obj.gamm_u = h_u*ops_u.borrowing.M.d1;
+            % obj.gamm_v = h_v*ops_v.borrowing.M.d1;
+        end
+
+
+        % Closure functions return the operators applied to the own domain to close the boundary
+        % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       type                is a string specifying the type of boundary condition if there are several.
+        %       data                is a function returning the data that should be applied at the boundary.
+        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
+        %       neighbour_boundary  is a string specifying which boundary to interface to.
+        function [closure, penalty] = boundary_condition(obj, boundary, type, parameter)
+            default_arg('type','free');
+            default_arg('parameter', []);
+
+            delta = @kroneckerDelta;    % Kronecker delta
+            delta_b = @(i,j) 1-dij(i,j); % Logical not of Kronecker delta
+
+            % j is the coordinate direction of the boundary
+            % nj: outward unit normal component. 
+            % nj = -1 for west, south, bottom boundaries
+            % nj = 1  for east, north, top boundaries
+            [j, nj] = obj.get_boundary_number(boundary);
+            switch nj
+            case 1
+                e = obj.e_r;
+                d = obj.d_r;
+            case -1
+                e = obj.e_l;
+                d = obj.d_l;
+            end
+
+            E = obj.E;
+            Hi = obj.Hi;
+            H_gamma = obj.H_boundary{j};
+            A = obj.A;
+
+            switch type
+                % Dirichlet boundary condition
+                case {'D','d','dirichlet'}
+                    error('Dirichlet not implemented')
+                    tuning = 1.2;
+                    % tuning = 20.2;
+
+                    b1 = gamm*obj.lambda./obj.a11.^2;
+                    b2 = gamm*obj.lambda./obj.a22.^2;
+
+                    tau1 = tuning * spdiag(-1./b1 - 1./b2);
+                    tau2 = 1;
+
+                    tau = (tau1*e + tau2*d)*H_b;
+
+                    closure =  obj.a*obj.Hi*tau*e';
+                    penalty = -obj.a*obj.Hi*tau;
+
+
+                % Free boundary condition
+                case {'F','f','Free','free'}
+                    closure = 0;
+                    penalty = 0;
+                    % Loop over components
+                    for i = 1:3
+                        closure = closure + E{i}*(-sign)*Hi*e{j}*H_gamma*(...
+                                e{j}'*A*e{j}*d{j}'*E{i}' + ...
+                                delta(i,j)*e{j}'*A*e{i}*d{i}*E{j}' + ...
+                                delta_b(i,j)*A*D1{i}*E{j}' ...
+                                );
+                        penalty = penalty - E{i}*(-sign)*Hi*e{j}*H_gamma;
+                    end
+
+                % Unknown boundary condition
+                otherwise
+                    error('No such boundary condition: type = %s',type);
+            end
+        end
+
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
+            % u denotes the solution in the own domain
+            % v denotes the solution in the neighbour domain
+            tuning = 1.2;
+            % tuning = 20.2;
+            error('Interface not implemented');
+        end
+
+        % Ruturns the coordinate number and outward normal component for the boundary specified by the string boundary.
+        function [j, nj] = get_boundary_number(obj, boundary)
+
+            switch boundary
+                case {'w','W','west','West', 'e', 'E', 'east', 'East'}
+                    j = 1;
+                case {'s','S','south','South', 'n', 'N', 'north', 'North'}
+                    j = 2;
+                otherwise
+                    error('No such boundary: boundary = %s',boundary);
+            end
+
+            switch boundary
+                case {'w','W','west','West','s','S','south','South'}
+                    nj = -1;
+                case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
+                    nj = 1;
+            end
+        end
+
+        function N = size(obj)
+            N = prod(obj.m);
+        end
+    end
+end