changeset 1201:8f4e79aa32ba feature/poroelastic

Add fully compatible D2Variable opSet and first implementation of ElasticAnisotropic
author Martin Almquist <malmquist@stanford.edu>
date Thu, 05 Sep 2019 14:13:00 -0700
parents d9da4c1cdaa0
children 31d7288d0653
files +sbp/D2VariableCompatible.m +scheme/Elastic2dVariableAnisotropic.m
diffstat 2 files changed, 692 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/D2VariableCompatible.m	Thu Sep 05 14:13:00 2019 -0700
@@ -0,0 +1,81 @@
+classdef D2VariableCompatible < sbp.OpSet
+    properties
+        D1 % SBP operator approximating first derivative
+        H % Norm matrix
+        HI % H^-1
+        Q % Skew-symmetric matrix
+        e_l % Left boundary operator
+        e_r % Right boundary operator
+        D2 % SBP operator for second derivative
+        M % Norm matrix, second derivative
+        d1_l % Left boundary first derivative
+        d1_r % Right boundary first derivative
+        m % Number of grid points.
+        h % Step size
+        x % grid
+        borrowing % Struct with borrowing limits for different norm matrices
+    end
+
+    methods
+        function obj = D2VariableCompatible(m,lim,order)
+
+            x_l = lim{1};
+            x_r = lim{2};
+            L = x_r-x_l;
+            obj.h = L/(m-1);
+            obj.x = linspace(x_l,x_r,m)';
+
+            switch order
+
+                case 6
+
+                    [obj.H, obj.HI, obj.D1, D2, ...
+                    ~, obj.e_l, obj.e_r, ~, ~, ~, ~, ~,...
+                     d1_l, d1_r] = ...
+                        sbp.implementations.d4_variable_6(m, obj.h);
+
+                case 4
+                    [obj.H, obj.HI, obj.D1, D2, obj.e_l,...
+                        obj.e_r, d1_l, d1_r] = ...
+                        sbp.implementations.d2_variable_4(m,obj.h);
+                case 2
+                    [obj.H, obj.HI, obj.D1, D2, obj.e_l,...
+                        obj.e_r, d1_l, d1_r] = ...
+                        sbp.implementations.d2_variable_2(m,obj.h);
+
+                otherwise
+                    error('Invalid operator order %d.',order);
+            end
+            obj.borrowing.H11 = obj.H(1,1)/obj.h; % First element in H/h,
+            obj.borrowing.M.d1 = obj.H(1,1)/obj.h; % First element in H/h is borrowing also for M
+            obj.borrowing.R.delta_D = inf;
+            obj.m = m;
+            obj.M = [];
+
+
+            D1 = obj.D1;
+            e_r = obj.e_r;
+            e_l = obj.e_l;
+
+            % D2 = Hinv * (-M + br*er*d1r^T - bl*el*d1l^T);
+            % Replace d1' by e'*D1 in D2.
+            D2_compatible = @(b) D2(b) - obj.HI*(b(m)*e_r*d1_r' - b(m)*e_r*e_r'*D1) ...
+                                       + obj.HI*(b(1)*e_l*d1_l' - b(1)*e_l*e_l'*D1);
+
+            obj.D2 = D2_compatible;
+            obj.d1_l = (e_l'*D1)';
+            obj.d1_r = (e_r'*D1)';
+
+        end
+        function str = string(obj)
+            str = [class(obj) '_' num2str(obj.order)];
+        end
+    end
+
+
+end
+
+
+
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/Elastic2dVariableAnisotropic.m	Thu Sep 05 14:13:00 2019 -0700
@@ -0,0 +1,611 @@
+classdef Elastic2dVariableAnisotropic < scheme.Scheme
+
+% Discretizes the elastic wave equation:
+% rho u_{i,tt} = dj C_{ijkl} dk u_j
+% opSet should be cell array of opSets, one per dimension. This
+% is useful if we have periodic BC in one direction.
+% Assumes fully compatible operators
+
+    properties
+        m % Number of points in each direction, possibly a vector
+        h % Grid spacing
+
+        grid
+        dim
+
+        order % Order of accuracy for the approximation
+
+        % Diagonal matrices for variable coefficients
+        RHO, RHOi, RHOi_kron % Density
+        C                    % Elastic stiffness tensor
+
+        D  % Total operator
+        D1 % First derivatives
+        D2 % Second derivatives
+
+        % Boundary operators in cell format, used for BC
+        T_w, T_e, T_s, T_n
+
+        % Traction operators
+        tau_w, tau_e, tau_s, tau_n      % Return vector field
+        tau1_w, tau1_e, tau1_s, tau1_n  % Return scalar field
+        tau2_w, tau2_e, tau2_s, tau2_n  % Return scalar field
+
+        % Inner products
+        H, Hi, Hi_kron, H_1D
+
+        % Boundary inner products (for scalar field)
+        H_w, H_e, H_s, H_n
+
+        % Boundary restriction operators
+        e_w, e_e, e_s, e_n      % Act on vector field, return vector field at boundary
+        e1_w, e1_e, e1_s, e1_n  % Act on vector field, return scalar field at boundary
+        e2_w, e2_e, e2_s, e2_n  % Act on vector field, return scalar field at boundary
+        e_scalar_w, e_scalar_e, e_scalar_s, e_scalar_n; % Act on scalar field, return scalar field
+
+        % E{i}^T picks out component i
+        E
+
+        % Borrowing constants of the form gamma*h, where gamma is a dimensionless constant.
+        h11 % First entry in norm matrix
+
+    end
+
+    methods
+
+        % The coefficients can either be function handles or grid functions
+        % optFlag -- if true, extra computations are performed, which may be helpful for optimization.
+        function obj = Elastic2dVariableAnisotropic(g, order, rho, C, opSet, optFlag)
+            default_arg('rho', @(x,y) 0*x+1);
+            default_arg('opSet',{@sbp.D2VariableCompatible, @sbp.D2VariableCompatible});
+            default_arg('optFlag', false);
+            dim = 2;
+
+            C_default = cell(dim,dim,dim,dim);
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            C_default{i,j,k,l} = @(x,y) 0*x + 1;
+                        end
+                    end
+                end
+            end
+            default_arg('C', C_default);
+            assert(isa(g, 'grid.Cartesian'))
+
+            if isa(rho, 'function_handle')
+                rho = grid.evalOn(g, rho);
+            end
+
+            C_mat = cell(dim,dim,dim,dim);
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            if isa(C{i,j,k,l}, 'function_handle')
+                                C{i,j,k,l} = grid.evalOn(g, C{i,j,k,l});
+                            end
+                            C_mat{i,j,k,l} = spdiag(C{i,j,k,l});
+                        end
+                    end
+                end
+            end
+            obj.C = C_mat;
+
+            m = g.size();
+            m_tot = g.N();
+            lim = g.lim;
+            if isempty(lim)
+                x = g.x;
+                lim = cell(length(x),1);
+                for i = 1:length(x)
+                    lim{i} = {min(x{i}), max(x{i})};
+                end
+            end
+
+            % 1D operators
+            ops = cell(dim,1);
+            h = zeros(dim,1);
+            for i = 1:dim
+                ops{i} = opSet{i}(m(i), lim{i}, order);
+                h(i) = ops{i}.h;
+            end
+
+            % Borrowing constants
+            for i = 1:dim
+                obj.h11{i} = h(i)*ops{i}.borrowing.H11;
+            end
+
+            I = cell(dim,1);
+            D1 = cell(dim,1);
+            D2 = cell(dim,1);
+            H = cell(dim,1);
+            Hi = cell(dim,1);
+            e_0 = cell(dim,1);
+            e_m = cell(dim,1);
+            d1_0 = cell(dim,1);
+            d1_m = cell(dim,1);
+
+            for i = 1:dim
+                I{i} = speye(m(i));
+                D1{i} = ops{i}.D1;
+                D2{i} = ops{i}.D2;
+                H{i} =  ops{i}.H;
+                Hi{i} = ops{i}.HI;
+                e_0{i} = ops{i}.e_l;
+                e_m{i} = ops{i}.e_r;
+                d1_0{i} = ops{i}.d1_l;
+                d1_m{i} = ops{i}.d1_r;
+            end
+
+            %====== Assemble full operators ========
+            RHO = spdiag(rho);
+            obj.RHO = RHO;
+            obj.RHOi = inv(RHO);
+
+            obj.D1 = cell(dim,1);
+            obj.D2 = cell(dim,dim,dim);
+
+            % D1
+            obj.D1{1} = kron(D1{1},I{2});
+            obj.D1{2} = kron(I{1},D1{2});
+
+            % Boundary restriction operators
+            e_l = cell(dim,1);
+            e_r = cell(dim,1);
+            e_l{1} = kron(e_0{1}, I{2});
+            e_l{2} = kron(I{1}, e_0{2});
+            e_r{1} = kron(e_m{1}, I{2});
+            e_r{2} = kron(I{1}, e_m{2});
+
+            e_scalar_w = e_l{1};
+            e_scalar_e = e_r{1};
+            e_scalar_s = e_l{2};
+            e_scalar_n = e_r{2};
+
+            I_dim = speye(dim, dim);
+            e_w = kron(e_scalar_w, I_dim);
+            e_e = kron(e_scalar_e, I_dim);
+            e_s = kron(e_scalar_s, I_dim);
+            e_n = kron(e_scalar_n, I_dim);
+
+            % E{i}^T picks out component i.
+            E = cell(dim,1);
+            I = speye(m_tot,m_tot);
+            for i = 1:dim
+                e = sparse(dim,1);
+                e(i) = 1;
+                E{i} = kron(I,e);
+            end
+            obj.E = E;
+
+            e1_w = (e_scalar_w'*E{1}')';
+            e1_e = (e_scalar_e'*E{1}')';
+            e1_s = (e_scalar_s'*E{1}')';
+            e1_n = (e_scalar_n'*E{1}')';
+
+            e2_w = (e_scalar_w'*E{2}')';
+            e2_e = (e_scalar_e'*E{2}')';
+            e2_s = (e_scalar_s'*E{2}')';
+            e2_n = (e_scalar_n'*E{2}')';
+
+
+            % D2
+            for i = 1:dim
+                for k = 2:dim
+                    for l = 2:dim
+                        obj.D2{i,k,l} = sparse(m_tot);
+                    end
+                end
+            end
+            ind = grid.funcToMatrix(g, 1:m_tot);
+
+            k = 1;
+            for r = 1:m(2)
+                p = ind(:,r);
+                for i = 1:dim
+                    for l = 1:dim
+                        coeff = C{i,k,k,l};
+                        D_kk = D2{1}(coeff(p));
+                        obj.D2{i,k,l}(p,p) = D_kk;
+                    end
+                end
+            end
+
+            k = 2;
+            for r = 1:m(1)
+                p = ind(r,:);
+                for i = 1:dim
+                    for l = 1:dim
+                        coeff = C{i,k,k,l};
+                        D_kk = D2{2}(coeff(p));
+                        obj.D2{i,k,l}(p,p) = D_kk;
+                    end
+                end
+            end
+
+            % Quadratures
+            obj.H = kron(H{1},H{2});
+            obj.Hi = inv(obj.H);
+            obj.H_w = H{2};
+            obj.H_e = H{2};
+            obj.H_s = H{1};
+            obj.H_n = H{1};
+            obj.H_1D = {H{1}, H{2}};
+
+            % Differentiation matrix D (without SAT)
+            D2 = obj.D2;
+            D1 = obj.D1;
+            D = sparse(dim*m_tot,dim*m_tot);
+            d = @kroneckerDelta;    % Kronecker delta
+            db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            D = D + E{i}*inv(RHO)*( d(j,k)*D2{i,k,l}*E{l}' +...
+                                                    db(j,k)*D1{j}*C_mat{i,j,k,l}*D1{k}*E{l}' ...
+                                                  );
+                        end
+                    end
+                end
+            end
+            obj.D = D;
+            %=========================================%'
+
+            % Numerical traction operators for BC.
+            %
+            % Formula at boundary j: % tau^{j}_i = sum_l T^{j}_{il} u_l
+            %
+            T_l = cell(dim,1);
+            T_r = cell(dim,1);
+            tau_l = cell(dim,1);
+            tau_r = cell(dim,1);
+
+            D1 = obj.D1;
+
+            % Boundary j
+            for j = 1:dim
+                T_l{j} = cell(dim,dim);
+                T_r{j} = cell(dim,dim);
+                tau_l{j} = cell(dim,1);
+                tau_r{j} = cell(dim,1);
+
+                [~, n_l] = size(e_l{j});
+                [~, n_r] = size(e_r{j});
+
+                % Traction component i
+                for i = 1:dim
+                    tau_l{j}{i} = sparse(dim*m_tot, n_l);
+                    tau_r{j}{i} = sparse(dim*m_tot, n_r);
+
+                    % Displacement component l
+                    for l = 1:dim
+                        T_l{j}{i,l} = sparse(m_tot, n_l);
+                        T_r{j}{i,l} = sparse(m_tot, n_r);
+
+                        % Derivative direction k
+                        for k = 1:dim
+                            T_l{j}{i,l} = T_l{j}{i,l} ...
+                                        - (e_l{j}'*C_mat{i,j,k,l}*D1{k})';
+                            T_r{j}{i,l} = T_r{j}{i,l} ...
+                                        + (e_r{j}'*C_mat{i,j,k,l}*D1{k})';
+                        end
+                        tau_l{j}{i} = tau_l{j}{i} + (T_l{j}{i,l}'*E{l}')';
+                        tau_r{j}{i} = tau_r{j}{i} + (T_r{j}{i,l}'*E{l}')';
+                    end
+                end
+            end
+
+            % Traction tensors, T_ij
+            obj.T_w = T_l{1};
+            obj.T_e = T_r{1};
+            obj.T_s = T_l{2};
+            obj.T_n = T_r{2};
+
+            % Restriction operators
+            obj.e_w = e_w;
+            obj.e_e = e_e;
+            obj.e_s = e_s;
+            obj.e_n = e_n;
+
+            obj.e1_w = e1_w;
+            obj.e1_e = e1_e;
+            obj.e1_s = e1_s;
+            obj.e1_n = e1_n;
+
+            obj.e2_w = e2_w;
+            obj.e2_e = e2_e;
+            obj.e2_s = e2_s;
+            obj.e2_n = e2_n;
+
+            obj.e_scalar_w = e_scalar_w;
+            obj.e_scalar_e = e_scalar_e;
+            obj.e_scalar_s = e_scalar_s;
+            obj.e_scalar_n = e_scalar_n;
+
+            % First component of traction
+            obj.tau1_w = tau_l{1}{1};
+            obj.tau1_e = tau_r{1}{1};
+            obj.tau1_s = tau_l{2}{1};
+            obj.tau1_n = tau_r{2}{1};
+
+            % Second component of traction
+            obj.tau2_w = tau_l{1}{2};
+            obj.tau2_e = tau_r{1}{2};
+            obj.tau2_s = tau_l{2}{2};
+            obj.tau2_n = tau_r{2}{2};
+
+            % Traction vectors
+            obj.tau_w = (e_w'*e1_w*obj.tau1_w')' + (e_w'*e2_w*obj.tau2_w')';
+            obj.tau_e = (e_e'*e1_e*obj.tau1_e')' + (e_e'*e2_e*obj.tau2_e')';
+            obj.tau_s = (e_s'*e1_s*obj.tau1_s')' + (e_s'*e2_s*obj.tau2_s')';
+            obj.tau_n = (e_n'*e1_n*obj.tau1_n')' + (e_n'*e2_n*obj.tau2_n')';
+
+            % Kroneckered norms and coefficients
+            obj.RHOi_kron = kron(obj.RHOi, I_dim);
+            obj.Hi_kron = kron(obj.Hi, I_dim);
+
+            % Misc.
+            obj.m = m;
+            obj.h = h;
+            obj.order = order;
+            obj.grid = g;
+            obj.dim = dim;
+
+        end
+
+
+        % Closure functions return the operators applied to the own domain to close the boundary
+        % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       bc                  is a cell array of component and bc type, e.g. {1, 'd'} for Dirichlet condition
+        %                           on the first component. Can also be e.g.
+        %                           {'normal', 'd'} or {'tangential', 't'} for conditions on
+        %                           tangential/normal component.
+        %       data                is a function returning the data that should be applied at the boundary.
+        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
+        %       neighbour_boundary  is a string specifying which boundary to interface to.
+        function [closure, penalty] = boundary_condition(obj, boundary, bc, tuning)
+            default_arg('tuning', 1.0);
+
+            assert( iscell(bc), 'The BC type must be a 2x1 cell array' );
+            comp = bc{1};
+            type = bc{2};
+            if ischar(comp)
+                comp = obj.getComponent(comp, boundary);
+            end
+
+            e       = obj.getBoundaryOperatorForScalarField('e', boundary);
+            tau     = obj.getBoundaryOperator(['tau' num2str(comp)], boundary);
+            T       = obj.getBoundaryTractionOperator(boundary);
+            h11     = obj.getBorrowing(boundary);
+            H_gamma = obj.getBoundaryQuadratureForScalarField(boundary);
+            nu      = obj.getNormal(boundary);
+
+            E = obj.E;
+            Hi = obj.Hi;
+            RHOi = obj.RHOi;
+            C = obj.C;
+
+            dim = obj.dim;
+            m_tot = obj.grid.N();
+
+            % Preallocate
+            [~, col] = size(tau);
+            closure = sparse(dim*m_tot, dim*m_tot);
+            penalty = sparse(dim*m_tot, col);
+
+            j = comp;
+            switch type
+
+            % Dirichlet boundary condition
+            % OBS! Cannot yet set one component at a time unless one assumes Displacement for all components
+            case {'D','d','dirichlet','Dirichlet','displacement','Displacement'}
+
+                % Loop over components that Dirichlet penalties end up on
+                % Y: symmetrizing part of penalty
+                % Z: symmetric part of penalty
+                % X = Y + Z.
+                for i = 1:dim
+                    Y = T{j,i}';
+
+                    Z = sparse(m_tot, m_tot);
+                    for l = 1:dim
+                        for k = 1:dim
+                            Z = Z + nu(l)*C{i,l,k,j}*nu(k);
+                        end
+                    end
+                    Z = -tuning*dim/h11*Z;
+                    X = Z + e*Y;
+                    closure = closure + E{i}*RHOi*Hi*X'*e*H_gamma*(e'*E{j}' );
+                    penalty = penalty - E{i}*RHOi*Hi*X'*e*H_gamma;
+                end
+
+            % Free boundary condition
+            case {'F','f','Free','free','traction','Traction','t','T'}
+                    closure = closure - E{j}*RHOi*Hi*e*H_gamma*tau';
+                    penalty = penalty + E{j}*RHOi*Hi*e*H_gamma;
+
+            % Unknown boundary condition
+            otherwise
+                error('No such boundary condition: type = %s',type);
+            end
+        end
+
+        % type     Struct that specifies the interface coupling.
+        %          Fields:
+        %          -- tuning:           penalty strength, defaults to 1.2
+        %          -- interpolation:    type of interpolation, default 'none'
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+
+            defaultType.tuning = 1.2;
+            defaultType.interpolation = 'none';
+            default_struct('type', defaultType);
+
+            switch type.interpolation
+            case {'none', ''}
+                [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type);
+            case {'op','OP'}
+                [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type);
+            otherwise
+                error('Unknown type of interpolation: %s ', type.interpolation);
+            end
+        end
+
+        function [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+            tuning = type.tuning;
+
+            % u denotes the solution in the own domain
+            % v denotes the solution in the neighbour domain
+            % Operators without subscripts are from the own domain.
+
+            % Get boundary operators
+            e   = obj.getBoundaryOperator('e', boundary);
+            tau = obj.getBoundaryOperator('tau', boundary);
+
+            e_v   = neighbour_scheme.getBoundaryOperator('e', neighbour_boundary);
+            tau_v = neighbour_scheme.getBoundaryOperator('tau', neighbour_boundary);
+
+            H_gamma = obj.getBoundaryQuadrature(boundary);
+
+            % Operators and quantities that correspond to the own domain only
+            Hi = obj.Hi_kron;
+            RHOi = obj.RHOi_kron;
+
+            % Penalty strength operators
+            alpha_u = 1/4*tuning*obj.getBoundaryOperator('alpha', boundary);
+            alpha_v = 1/4*tuning*neighbour_scheme.getBoundaryOperator('alpha', neighbour_boundary);
+
+            closure = -RHOi*Hi*e*H_gamma*(alpha_u' + alpha_v'*e_v*e');
+            penalty = RHOi*Hi*e*H_gamma*(alpha_u'*e*e_v' + alpha_v');
+
+            closure = closure - 1/2*RHOi*Hi*e*H_gamma*tau';
+            penalty = penalty - 1/2*RHOi*Hi*e*H_gamma*tau_v';
+
+            closure = closure + 1/2*RHOi*Hi*tau*H_gamma*e';
+            penalty = penalty - 1/2*RHOi*Hi*tau*H_gamma*e_v';
+
+        end
+
+        function [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+            error('Non-conforming interfaces not implemented yet.');
+        end
+
+        % Returns the component number that is the tangential/normal component
+        % at the specified boundary
+        function comp = getComponent(obj, comp_str, boundary)
+            assertIsMember(comp_str, {'normal', 'tangential'});
+            assertIsMember(boundary, {'w', 'e', 's', 'n'});
+
+            switch boundary
+            case {'w', 'e'}
+                switch comp_str
+                case 'normal'
+                    comp = 1;
+                case 'tangential'
+                    comp = 2;
+                end
+            case {'s', 'n'}
+                switch comp_str
+                case 'normal'
+                    comp = 2;
+                case 'tangential'
+                    comp = 1;
+                end
+            end
+        end
+
+        % Returns h11 for the boundary specified by the string boundary.
+        % op -- string
+        function h11 = getBorrowing(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            switch boundary
+            case {'w','e'}
+                h11 = obj.h11{1};
+            case {'s', 'n'}
+                h11 = obj.h11{2};
+            end
+        end
+
+        % Returns the outward unit normal vector for the boundary specified by the string boundary.
+        function nu = getNormal(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            switch boundary
+            case 'w'
+                nu = [-1,0];
+            case 'e'
+                nu = [1,0];
+            case 's'
+                nu = [0,-1];
+            case 'n'
+                nu = [0,1];
+            end
+        end
+
+        % Returns the boundary operator op for the boundary specified by the string boundary.
+        % op -- string
+        function o = getBoundaryOperator(obj, op, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+            assertIsMember(op, {'e', 'e1', 'e2', 'tau', 'tau1', 'tau2'})
+
+            switch op
+                case {'e', 'e1', 'e2', 'tau', 'tau1', 'tau2'}
+                    o = obj.([op, '_', boundary]);
+            end
+
+        end
+
+        % Returns the boundary operator op for the boundary specified by the string boundary.
+        % op -- string
+        function o = getBoundaryOperatorForScalarField(obj, op, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+            assertIsMember(op, {'e'})
+
+            switch op
+
+                case 'e'
+                    o = obj.(['e_scalar', '_', boundary]);
+            end
+
+        end
+
+        % Returns the boundary operator T_ij (cell format) for the boundary specified by the string boundary.
+        % Formula: tau_i = T_ij u_j
+        % op -- string
+        function T = getBoundaryTractionOperator(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            T = obj.(['T', '_', boundary]);
+        end
+
+        % Returns square boundary quadrature matrix, of dimension
+        % corresponding to the number of boundary unknowns
+        %
+        % boundary -- string
+        function H = getBoundaryQuadrature(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            H = obj.getBoundaryQuadratureForScalarField(boundary);
+            I_dim = speye(obj.dim, obj.dim);
+            H = kron(H, I_dim);
+        end
+
+        % Returns square boundary quadrature matrix, of dimension
+        % corresponding to the number of boundary grid points
+        %
+        % boundary -- string
+        function H_b = getBoundaryQuadratureForScalarField(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            H_b = obj.(['H_', boundary]);
+        end
+
+        function N = size(obj)
+            N = obj.dim*prod(obj.m);
+        end
+    end
+end