Mercurial > repos > public > sbplib
changeset 1201:8f4e79aa32ba feature/poroelastic
Add fully compatible D2Variable opSet and first implementation of ElasticAnisotropic
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Thu, 05 Sep 2019 14:13:00 -0700 |
parents | d9da4c1cdaa0 |
children | 31d7288d0653 |
files | +sbp/D2VariableCompatible.m +scheme/Elastic2dVariableAnisotropic.m |
diffstat | 2 files changed, 692 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
diff -r d9da4c1cdaa0 -r 8f4e79aa32ba +sbp/D2VariableCompatible.m --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+sbp/D2VariableCompatible.m Thu Sep 05 14:13:00 2019 -0700 @@ -0,0 +1,81 @@ +classdef D2VariableCompatible < sbp.OpSet + properties + D1 % SBP operator approximating first derivative + H % Norm matrix + HI % H^-1 + Q % Skew-symmetric matrix + e_l % Left boundary operator + e_r % Right boundary operator + D2 % SBP operator for second derivative + M % Norm matrix, second derivative + d1_l % Left boundary first derivative + d1_r % Right boundary first derivative + m % Number of grid points. + h % Step size + x % grid + borrowing % Struct with borrowing limits for different norm matrices + end + + methods + function obj = D2VariableCompatible(m,lim,order) + + x_l = lim{1}; + x_r = lim{2}; + L = x_r-x_l; + obj.h = L/(m-1); + obj.x = linspace(x_l,x_r,m)'; + + switch order + + case 6 + + [obj.H, obj.HI, obj.D1, D2, ... + ~, obj.e_l, obj.e_r, ~, ~, ~, ~, ~,... + d1_l, d1_r] = ... + sbp.implementations.d4_variable_6(m, obj.h); + + case 4 + [obj.H, obj.HI, obj.D1, D2, obj.e_l,... + obj.e_r, d1_l, d1_r] = ... + sbp.implementations.d2_variable_4(m,obj.h); + case 2 + [obj.H, obj.HI, obj.D1, D2, obj.e_l,... + obj.e_r, d1_l, d1_r] = ... + sbp.implementations.d2_variable_2(m,obj.h); + + otherwise + error('Invalid operator order %d.',order); + end + obj.borrowing.H11 = obj.H(1,1)/obj.h; % First element in H/h, + obj.borrowing.M.d1 = obj.H(1,1)/obj.h; % First element in H/h is borrowing also for M + obj.borrowing.R.delta_D = inf; + obj.m = m; + obj.M = []; + + + D1 = obj.D1; + e_r = obj.e_r; + e_l = obj.e_l; + + % D2 = Hinv * (-M + br*er*d1r^T - bl*el*d1l^T); + % Replace d1' by e'*D1 in D2. + D2_compatible = @(b) D2(b) - obj.HI*(b(m)*e_r*d1_r' - b(m)*e_r*e_r'*D1) ... + + obj.HI*(b(1)*e_l*d1_l' - b(1)*e_l*e_l'*D1); + + obj.D2 = D2_compatible; + obj.d1_l = (e_l'*D1)'; + obj.d1_r = (e_r'*D1)'; + + end + function str = string(obj) + str = [class(obj) '_' num2str(obj.order)]; + end + end + + +end + + + + +
diff -r d9da4c1cdaa0 -r 8f4e79aa32ba +scheme/Elastic2dVariableAnisotropic.m --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+scheme/Elastic2dVariableAnisotropic.m Thu Sep 05 14:13:00 2019 -0700 @@ -0,0 +1,611 @@ +classdef Elastic2dVariableAnisotropic < scheme.Scheme + +% Discretizes the elastic wave equation: +% rho u_{i,tt} = dj C_{ijkl} dk u_j +% opSet should be cell array of opSets, one per dimension. This +% is useful if we have periodic BC in one direction. +% Assumes fully compatible operators + + properties + m % Number of points in each direction, possibly a vector + h % Grid spacing + + grid + dim + + order % Order of accuracy for the approximation + + % Diagonal matrices for variable coefficients + RHO, RHOi, RHOi_kron % Density + C % Elastic stiffness tensor + + D % Total operator + D1 % First derivatives + D2 % Second derivatives + + % Boundary operators in cell format, used for BC + T_w, T_e, T_s, T_n + + % Traction operators + tau_w, tau_e, tau_s, tau_n % Return vector field + tau1_w, tau1_e, tau1_s, tau1_n % Return scalar field + tau2_w, tau2_e, tau2_s, tau2_n % Return scalar field + + % Inner products + H, Hi, Hi_kron, H_1D + + % Boundary inner products (for scalar field) + H_w, H_e, H_s, H_n + + % Boundary restriction operators + e_w, e_e, e_s, e_n % Act on vector field, return vector field at boundary + e1_w, e1_e, e1_s, e1_n % Act on vector field, return scalar field at boundary + e2_w, e2_e, e2_s, e2_n % Act on vector field, return scalar field at boundary + e_scalar_w, e_scalar_e, e_scalar_s, e_scalar_n; % Act on scalar field, return scalar field + + % E{i}^T picks out component i + E + + % Borrowing constants of the form gamma*h, where gamma is a dimensionless constant. + h11 % First entry in norm matrix + + end + + methods + + % The coefficients can either be function handles or grid functions + % optFlag -- if true, extra computations are performed, which may be helpful for optimization. + function obj = Elastic2dVariableAnisotropic(g, order, rho, C, opSet, optFlag) + default_arg('rho', @(x,y) 0*x+1); + default_arg('opSet',{@sbp.D2VariableCompatible, @sbp.D2VariableCompatible}); + default_arg('optFlag', false); + dim = 2; + + C_default = cell(dim,dim,dim,dim); + for i = 1:dim + for j = 1:dim + for k = 1:dim + for l = 1:dim + C_default{i,j,k,l} = @(x,y) 0*x + 1; + end + end + end + end + default_arg('C', C_default); + assert(isa(g, 'grid.Cartesian')) + + if isa(rho, 'function_handle') + rho = grid.evalOn(g, rho); + end + + C_mat = cell(dim,dim,dim,dim); + for i = 1:dim + for j = 1:dim + for k = 1:dim + for l = 1:dim + if isa(C{i,j,k,l}, 'function_handle') + C{i,j,k,l} = grid.evalOn(g, C{i,j,k,l}); + end + C_mat{i,j,k,l} = spdiag(C{i,j,k,l}); + end + end + end + end + obj.C = C_mat; + + m = g.size(); + m_tot = g.N(); + lim = g.lim; + if isempty(lim) + x = g.x; + lim = cell(length(x),1); + for i = 1:length(x) + lim{i} = {min(x{i}), max(x{i})}; + end + end + + % 1D operators + ops = cell(dim,1); + h = zeros(dim,1); + for i = 1:dim + ops{i} = opSet{i}(m(i), lim{i}, order); + h(i) = ops{i}.h; + end + + % Borrowing constants + for i = 1:dim + obj.h11{i} = h(i)*ops{i}.borrowing.H11; + end + + I = cell(dim,1); + D1 = cell(dim,1); + D2 = cell(dim,1); + H = cell(dim,1); + Hi = cell(dim,1); + e_0 = cell(dim,1); + e_m = cell(dim,1); + d1_0 = cell(dim,1); + d1_m = cell(dim,1); + + for i = 1:dim + I{i} = speye(m(i)); + D1{i} = ops{i}.D1; + D2{i} = ops{i}.D2; + H{i} = ops{i}.H; + Hi{i} = ops{i}.HI; + e_0{i} = ops{i}.e_l; + e_m{i} = ops{i}.e_r; + d1_0{i} = ops{i}.d1_l; + d1_m{i} = ops{i}.d1_r; + end + + %====== Assemble full operators ======== + RHO = spdiag(rho); + obj.RHO = RHO; + obj.RHOi = inv(RHO); + + obj.D1 = cell(dim,1); + obj.D2 = cell(dim,dim,dim); + + % D1 + obj.D1{1} = kron(D1{1},I{2}); + obj.D1{2} = kron(I{1},D1{2}); + + % Boundary restriction operators + e_l = cell(dim,1); + e_r = cell(dim,1); + e_l{1} = kron(e_0{1}, I{2}); + e_l{2} = kron(I{1}, e_0{2}); + e_r{1} = kron(e_m{1}, I{2}); + e_r{2} = kron(I{1}, e_m{2}); + + e_scalar_w = e_l{1}; + e_scalar_e = e_r{1}; + e_scalar_s = e_l{2}; + e_scalar_n = e_r{2}; + + I_dim = speye(dim, dim); + e_w = kron(e_scalar_w, I_dim); + e_e = kron(e_scalar_e, I_dim); + e_s = kron(e_scalar_s, I_dim); + e_n = kron(e_scalar_n, I_dim); + + % E{i}^T picks out component i. + E = cell(dim,1); + I = speye(m_tot,m_tot); + for i = 1:dim + e = sparse(dim,1); + e(i) = 1; + E{i} = kron(I,e); + end + obj.E = E; + + e1_w = (e_scalar_w'*E{1}')'; + e1_e = (e_scalar_e'*E{1}')'; + e1_s = (e_scalar_s'*E{1}')'; + e1_n = (e_scalar_n'*E{1}')'; + + e2_w = (e_scalar_w'*E{2}')'; + e2_e = (e_scalar_e'*E{2}')'; + e2_s = (e_scalar_s'*E{2}')'; + e2_n = (e_scalar_n'*E{2}')'; + + + % D2 + for i = 1:dim + for k = 2:dim + for l = 2:dim + obj.D2{i,k,l} = sparse(m_tot); + end + end + end + ind = grid.funcToMatrix(g, 1:m_tot); + + k = 1; + for r = 1:m(2) + p = ind(:,r); + for i = 1:dim + for l = 1:dim + coeff = C{i,k,k,l}; + D_kk = D2{1}(coeff(p)); + obj.D2{i,k,l}(p,p) = D_kk; + end + end + end + + k = 2; + for r = 1:m(1) + p = ind(r,:); + for i = 1:dim + for l = 1:dim + coeff = C{i,k,k,l}; + D_kk = D2{2}(coeff(p)); + obj.D2{i,k,l}(p,p) = D_kk; + end + end + end + + % Quadratures + obj.H = kron(H{1},H{2}); + obj.Hi = inv(obj.H); + obj.H_w = H{2}; + obj.H_e = H{2}; + obj.H_s = H{1}; + obj.H_n = H{1}; + obj.H_1D = {H{1}, H{2}}; + + % Differentiation matrix D (without SAT) + D2 = obj.D2; + D1 = obj.D1; + D = sparse(dim*m_tot,dim*m_tot); + d = @kroneckerDelta; % Kronecker delta + db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta + for i = 1:dim + for j = 1:dim + for k = 1:dim + for l = 1:dim + D = D + E{i}*inv(RHO)*( d(j,k)*D2{i,k,l}*E{l}' +... + db(j,k)*D1{j}*C_mat{i,j,k,l}*D1{k}*E{l}' ... + ); + end + end + end + end + obj.D = D; + %=========================================%' + + % Numerical traction operators for BC. + % + % Formula at boundary j: % tau^{j}_i = sum_l T^{j}_{il} u_l + % + T_l = cell(dim,1); + T_r = cell(dim,1); + tau_l = cell(dim,1); + tau_r = cell(dim,1); + + D1 = obj.D1; + + % Boundary j + for j = 1:dim + T_l{j} = cell(dim,dim); + T_r{j} = cell(dim,dim); + tau_l{j} = cell(dim,1); + tau_r{j} = cell(dim,1); + + [~, n_l] = size(e_l{j}); + [~, n_r] = size(e_r{j}); + + % Traction component i + for i = 1:dim + tau_l{j}{i} = sparse(dim*m_tot, n_l); + tau_r{j}{i} = sparse(dim*m_tot, n_r); + + % Displacement component l + for l = 1:dim + T_l{j}{i,l} = sparse(m_tot, n_l); + T_r{j}{i,l} = sparse(m_tot, n_r); + + % Derivative direction k + for k = 1:dim + T_l{j}{i,l} = T_l{j}{i,l} ... + - (e_l{j}'*C_mat{i,j,k,l}*D1{k})'; + T_r{j}{i,l} = T_r{j}{i,l} ... + + (e_r{j}'*C_mat{i,j,k,l}*D1{k})'; + end + tau_l{j}{i} = tau_l{j}{i} + (T_l{j}{i,l}'*E{l}')'; + tau_r{j}{i} = tau_r{j}{i} + (T_r{j}{i,l}'*E{l}')'; + end + end + end + + % Traction tensors, T_ij + obj.T_w = T_l{1}; + obj.T_e = T_r{1}; + obj.T_s = T_l{2}; + obj.T_n = T_r{2}; + + % Restriction operators + obj.e_w = e_w; + obj.e_e = e_e; + obj.e_s = e_s; + obj.e_n = e_n; + + obj.e1_w = e1_w; + obj.e1_e = e1_e; + obj.e1_s = e1_s; + obj.e1_n = e1_n; + + obj.e2_w = e2_w; + obj.e2_e = e2_e; + obj.e2_s = e2_s; + obj.e2_n = e2_n; + + obj.e_scalar_w = e_scalar_w; + obj.e_scalar_e = e_scalar_e; + obj.e_scalar_s = e_scalar_s; + obj.e_scalar_n = e_scalar_n; + + % First component of traction + obj.tau1_w = tau_l{1}{1}; + obj.tau1_e = tau_r{1}{1}; + obj.tau1_s = tau_l{2}{1}; + obj.tau1_n = tau_r{2}{1}; + + % Second component of traction + obj.tau2_w = tau_l{1}{2}; + obj.tau2_e = tau_r{1}{2}; + obj.tau2_s = tau_l{2}{2}; + obj.tau2_n = tau_r{2}{2}; + + % Traction vectors + obj.tau_w = (e_w'*e1_w*obj.tau1_w')' + (e_w'*e2_w*obj.tau2_w')'; + obj.tau_e = (e_e'*e1_e*obj.tau1_e')' + (e_e'*e2_e*obj.tau2_e')'; + obj.tau_s = (e_s'*e1_s*obj.tau1_s')' + (e_s'*e2_s*obj.tau2_s')'; + obj.tau_n = (e_n'*e1_n*obj.tau1_n')' + (e_n'*e2_n*obj.tau2_n')'; + + % Kroneckered norms and coefficients + obj.RHOi_kron = kron(obj.RHOi, I_dim); + obj.Hi_kron = kron(obj.Hi, I_dim); + + % Misc. + obj.m = m; + obj.h = h; + obj.order = order; + obj.grid = g; + obj.dim = dim; + + end + + + % Closure functions return the operators applied to the own domain to close the boundary + % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin. + % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. + % bc is a cell array of component and bc type, e.g. {1, 'd'} for Dirichlet condition + % on the first component. Can also be e.g. + % {'normal', 'd'} or {'tangential', 't'} for conditions on + % tangential/normal component. + % data is a function returning the data that should be applied at the boundary. + % neighbour_scheme is an instance of Scheme that should be interfaced to. + % neighbour_boundary is a string specifying which boundary to interface to. + function [closure, penalty] = boundary_condition(obj, boundary, bc, tuning) + default_arg('tuning', 1.0); + + assert( iscell(bc), 'The BC type must be a 2x1 cell array' ); + comp = bc{1}; + type = bc{2}; + if ischar(comp) + comp = obj.getComponent(comp, boundary); + end + + e = obj.getBoundaryOperatorForScalarField('e', boundary); + tau = obj.getBoundaryOperator(['tau' num2str(comp)], boundary); + T = obj.getBoundaryTractionOperator(boundary); + h11 = obj.getBorrowing(boundary); + H_gamma = obj.getBoundaryQuadratureForScalarField(boundary); + nu = obj.getNormal(boundary); + + E = obj.E; + Hi = obj.Hi; + RHOi = obj.RHOi; + C = obj.C; + + dim = obj.dim; + m_tot = obj.grid.N(); + + % Preallocate + [~, col] = size(tau); + closure = sparse(dim*m_tot, dim*m_tot); + penalty = sparse(dim*m_tot, col); + + j = comp; + switch type + + % Dirichlet boundary condition + % OBS! Cannot yet set one component at a time unless one assumes Displacement for all components + case {'D','d','dirichlet','Dirichlet','displacement','Displacement'} + + % Loop over components that Dirichlet penalties end up on + % Y: symmetrizing part of penalty + % Z: symmetric part of penalty + % X = Y + Z. + for i = 1:dim + Y = T{j,i}'; + + Z = sparse(m_tot, m_tot); + for l = 1:dim + for k = 1:dim + Z = Z + nu(l)*C{i,l,k,j}*nu(k); + end + end + Z = -tuning*dim/h11*Z; + X = Z + e*Y; + closure = closure + E{i}*RHOi*Hi*X'*e*H_gamma*(e'*E{j}' ); + penalty = penalty - E{i}*RHOi*Hi*X'*e*H_gamma; + end + + % Free boundary condition + case {'F','f','Free','free','traction','Traction','t','T'} + closure = closure - E{j}*RHOi*Hi*e*H_gamma*tau'; + penalty = penalty + E{j}*RHOi*Hi*e*H_gamma; + + % Unknown boundary condition + otherwise + error('No such boundary condition: type = %s',type); + end + end + + % type Struct that specifies the interface coupling. + % Fields: + % -- tuning: penalty strength, defaults to 1.2 + % -- interpolation: type of interpolation, default 'none' + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type) + + defaultType.tuning = 1.2; + defaultType.interpolation = 'none'; + default_struct('type', defaultType); + + switch type.interpolation + case {'none', ''} + [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type); + case {'op','OP'} + [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type); + otherwise + error('Unknown type of interpolation: %s ', type.interpolation); + end + end + + function [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type) + tuning = type.tuning; + + % u denotes the solution in the own domain + % v denotes the solution in the neighbour domain + % Operators without subscripts are from the own domain. + + % Get boundary operators + e = obj.getBoundaryOperator('e', boundary); + tau = obj.getBoundaryOperator('tau', boundary); + + e_v = neighbour_scheme.getBoundaryOperator('e', neighbour_boundary); + tau_v = neighbour_scheme.getBoundaryOperator('tau', neighbour_boundary); + + H_gamma = obj.getBoundaryQuadrature(boundary); + + % Operators and quantities that correspond to the own domain only + Hi = obj.Hi_kron; + RHOi = obj.RHOi_kron; + + % Penalty strength operators + alpha_u = 1/4*tuning*obj.getBoundaryOperator('alpha', boundary); + alpha_v = 1/4*tuning*neighbour_scheme.getBoundaryOperator('alpha', neighbour_boundary); + + closure = -RHOi*Hi*e*H_gamma*(alpha_u' + alpha_v'*e_v*e'); + penalty = RHOi*Hi*e*H_gamma*(alpha_u'*e*e_v' + alpha_v'); + + closure = closure - 1/2*RHOi*Hi*e*H_gamma*tau'; + penalty = penalty - 1/2*RHOi*Hi*e*H_gamma*tau_v'; + + closure = closure + 1/2*RHOi*Hi*tau*H_gamma*e'; + penalty = penalty - 1/2*RHOi*Hi*tau*H_gamma*e_v'; + + end + + function [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type) + error('Non-conforming interfaces not implemented yet.'); + end + + % Returns the component number that is the tangential/normal component + % at the specified boundary + function comp = getComponent(obj, comp_str, boundary) + assertIsMember(comp_str, {'normal', 'tangential'}); + assertIsMember(boundary, {'w', 'e', 's', 'n'}); + + switch boundary + case {'w', 'e'} + switch comp_str + case 'normal' + comp = 1; + case 'tangential' + comp = 2; + end + case {'s', 'n'} + switch comp_str + case 'normal' + comp = 2; + case 'tangential' + comp = 1; + end + end + end + + % Returns h11 for the boundary specified by the string boundary. + % op -- string + function h11 = getBorrowing(obj, boundary) + assertIsMember(boundary, {'w', 'e', 's', 'n'}) + + switch boundary + case {'w','e'} + h11 = obj.h11{1}; + case {'s', 'n'} + h11 = obj.h11{2}; + end + end + + % Returns the outward unit normal vector for the boundary specified by the string boundary. + function nu = getNormal(obj, boundary) + assertIsMember(boundary, {'w', 'e', 's', 'n'}) + + switch boundary + case 'w' + nu = [-1,0]; + case 'e' + nu = [1,0]; + case 's' + nu = [0,-1]; + case 'n' + nu = [0,1]; + end + end + + % Returns the boundary operator op for the boundary specified by the string boundary. + % op -- string + function o = getBoundaryOperator(obj, op, boundary) + assertIsMember(boundary, {'w', 'e', 's', 'n'}) + assertIsMember(op, {'e', 'e1', 'e2', 'tau', 'tau1', 'tau2'}) + + switch op + case {'e', 'e1', 'e2', 'tau', 'tau1', 'tau2'} + o = obj.([op, '_', boundary]); + end + + end + + % Returns the boundary operator op for the boundary specified by the string boundary. + % op -- string + function o = getBoundaryOperatorForScalarField(obj, op, boundary) + assertIsMember(boundary, {'w', 'e', 's', 'n'}) + assertIsMember(op, {'e'}) + + switch op + + case 'e' + o = obj.(['e_scalar', '_', boundary]); + end + + end + + % Returns the boundary operator T_ij (cell format) for the boundary specified by the string boundary. + % Formula: tau_i = T_ij u_j + % op -- string + function T = getBoundaryTractionOperator(obj, boundary) + assertIsMember(boundary, {'w', 'e', 's', 'n'}) + + T = obj.(['T', '_', boundary]); + end + + % Returns square boundary quadrature matrix, of dimension + % corresponding to the number of boundary unknowns + % + % boundary -- string + function H = getBoundaryQuadrature(obj, boundary) + assertIsMember(boundary, {'w', 'e', 's', 'n'}) + + H = obj.getBoundaryQuadratureForScalarField(boundary); + I_dim = speye(obj.dim, obj.dim); + H = kron(H, I_dim); + end + + % Returns square boundary quadrature matrix, of dimension + % corresponding to the number of boundary grid points + % + % boundary -- string + function H_b = getBoundaryQuadratureForScalarField(obj, boundary) + assertIsMember(boundary, {'w', 'e', 's', 'n'}) + + H_b = obj.(['H_', boundary]); + end + + function N = size(obj) + N = obj.dim*prod(obj.m); + end + end +end