Mercurial > repos > public > sbplib
changeset 314:88584b0cfba1 feature/beams
Corrections and clean up order 4
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 23 Sep 2016 22:55:30 +0200 |
parents | 52b4cdf27633 |
children | 297d2cbfbe15 |
files | +sbp/+implementations/d1_upwind_4.m +sbp/+implementations/d4_variable_2.m +sbp/+implementations/d4_variable_4.m |
diffstat | 3 files changed, 49 insertions(+), 83 deletions(-) [+] |
line wrap: on
line diff
--- a/+sbp/+implementations/d1_upwind_4.m Fri Sep 23 21:58:52 2016 +0200 +++ b/+sbp/+implementations/d1_upwind_4.m Fri Sep 23 22:55:30 2016 +0200 @@ -23,7 +23,7 @@ ]; Qp(1:4,1:4)=Q_U; - Qp(m-3:m,m-3:m)=rot90(Q_U,2)'; %%% This is different from standard SBP + Qp(m-3:m,m-3:m)=rot90(Q_U, 2)'; %%% This is different from standard SBP Qm=-Qp';
--- a/+sbp/+implementations/d4_variable_2.m Fri Sep 23 21:58:52 2016 +0200 +++ b/+sbp/+implementations/d4_variable_2.m Fri Sep 23 22:55:30 2016 +0200 @@ -37,7 +37,7 @@ d3_l = sparse(m,1); d3_l(1:4) = 1/h^3*[-1 3 -3 1]; - d3_r = -rot90(d3_l, 2) + d3_r = -rot90(d3_l, 2); % First derivative SBP operator, 1st order accurate at first 6 boundary points @@ -45,7 +45,7 @@ diags = [-1 0 1]; Q = stripeMatrix(stencil, diags, m); - D1 = HI*(Q-1/2*(e_1*e_1') + 1/2*(e_m*e_m')); + D1 = HI*(Q - 1/2*e_l*e_l' + 1/2*e_r*e_r'); % Second derivative, 1st order accurate at first boundary points M = sparse(m,m); @@ -85,5 +85,5 @@ M4(m-3:m,m-3:m) = rot90(M4_U, 2); M4 = 1/h^3*M4; - D4=HI*(M4-e_1*S3_1'+e_m*S3_m' + S_1*S2_1'-S_m*S2_m'); + D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r'); end
--- a/+sbp/+implementations/d4_variable_4.m Fri Sep 23 21:58:52 2016 +0200 +++ b/+sbp/+implementations/d4_variable_4.m Fri Sep 23 22:55:30 2016 +0200 @@ -13,56 +13,53 @@ error(['Operator requires at least ' num2str(2*BP) ' grid points']); end - H = speye(m,m); - H(1:4,1:4) = diag([17/48 59/48 43/48 49/48]); - H(m-3:m,m-3:m) = rot90(diag([17/48 59/48 43/48 49/48]),2); - H = H*h; - HI = inv(H); - HI = sparse(HI); + % Norm + Hv = ones(m,1); + Hv(1:4) = [17/48 59/48 43/48 49/48]; + Hv(m-3:m) = rot90(Hv(1:4),2); + Hv = h*Hv; + H = spdiag(Hv, 0); + HI = spdiag(1./Hv, 0); -% Q=(-1/12*diag(ones(m-2,1),2)+8/12*diag(ones(m-1,1),1)-8/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2)); - e = ones(m,1); -% Q=spdiags([e -8*e 0*e 8*e -e], -2:2, m, m)/12; -% Q_U = [0 0.59e2/0.96e2 -0.1e1/0.12e2 -0.1e1/0.32e2; -0.59e2/0.96e2 0 0.59e2/0.96e2 0; 0.1e1/0.12e2 -0.59e2/0.96e2 0 0.59e2/0.96e2; 0.1e1/0.32e2 0 -0.59e2/0.96e2 0;]; -% Q(1:4,1:4)=Q_U; -% Q(m-3:m,m-3:m)=rot90( -Q_U(1:4,1:4) ,2 ); - - e_1 = sparse(m,1); - e_1(1) = 1; - e_m = sparse(m,1); - e_m(m) = 1; - -% D1=HI*(Q-1/2*(e_1*e_1')+1/2*(e_m*e_m')) ; + % Boundary operators + e_l = sparse(m,1); + e_l(1) = 1; + e_r = rot90(e_l, 2); - M_U = [ - 0.9e1/0.8e1 -0.59e2/0.48e2 0.1e1/0.12e2 0.1e1/0.48e2; - -0.59e2/0.48e2 0.59e2/0.24e2 -0.59e2/0.48e2 0; - 0.1e1/0.12e2 -0.59e2/0.48e2 0.55e2/0.24e2 -0.59e2/0.48e2; - 0.1e1/0.48e2 0 -0.59e2/0.48e2 0.59e2/0.24e2; - ]; -% M=-(-1/12*diag(ones(m-2,1),2)+16/12*diag(ones(m-1,1),1)+16/12*diag(ones(m-1,1),-1)-1/12*diag(ones(m-2,1),-2)-30/12*diag(ones(m,1),0)); - M = -spdiags([-e 16*e -30*e 16*e -e], -2:2, m, m)/12; - - M(1:4,1:4) = M_U; + d1_l = sparse(m,1); + d1_l(1:4) = 1/h*[-11/6 3 -3/2 1/3]; + d1_r = -rot90(d1_l); - M(m-3:m,m-3:m) = rot90( M_U ,2 ); - M=M/h; + d2_l = sparse(m,1); + d2_l(1:4) = 1/h^2*[2 -5 4 -1]; + d2_r = rot90(d2_l, 2); - S_U=[-0.11e2/0.6e1 3 -0.3e1/0.2e1 0.1e1/0.3e1;]/h; - S_1=sparse(1,m); - S_1(1:4)=S_U; - S_m=sparse(1,m); - S_m(m-3:m)=fliplr(-S_U); - S_1 = S_1'; - S_m = S_m'; + d3_l = sparse(m,1); + d3_l(1:4) = 1/h^3*[-1 3 -3 1]; + d3_r = -rot90(d3_l, 2); + % First derivative SBP operator, + stencil = [1/12 -2/3 0 2/3 -1/12]; + diags = [-1 0 1]; + + Q_U = [ + 0 0.59e2/0.96e2 -0.1e1/0.12e2 -0.1e1/0.32e2; + -0.59e2/0.96e2 0 0.59e2/0.96e2 0; + 0.1e1/0.12e2 -0.59e2/0.96e2 0 0.59e2/0.96e2; + 0.1e1/0.32e2 0 -0.59e2/0.96e2 0; + ]; + + Q = stripeMatrix(stencil, diags, m); + Q(1:4,1:4)=Q_U; + Q(m-3:m,m-3:m) = -rot90(Q_U, 2); + + D1 = HI*(Q - 1/2*e_l*e_l' + 1/2*e_r*e_r'); + + + % Second derivative M=sparse(m,m); - e_1 = sparse(e_1); - e_m = sparse(e_m); - S_1 = sparse(S_1); - S_m = sparse(S_m); scheme_width = 5; scheme_radius = (scheme_width-1)/2; @@ -109,9 +106,6 @@ % Kan man skriva det som en multiplikation av en 3-dim matris? %%%%%%%%%%%%%%%%%%%%%%%%%%%%% - - - M(1:6,1:6) = [ 0.12e2/0.17e2 * c(1) + 0.59e2/0.192e3 * c(2) + 0.27010400129e11/0.345067064608e12 * c(3) + 0.69462376031e11/0.2070402387648e13 * c(4) -0.59e2/0.68e2 * c(1) - 0.6025413881e10/0.21126554976e11 * c(3) - 0.537416663e9/0.7042184992e10 * c(4) 0.2e1/0.17e2 * c(1) - 0.59e2/0.192e3 * c(2) + 0.213318005e9/0.16049630912e11 * c(4) + 0.2083938599e10/0.8024815456e10 * c(3) 0.3e1/0.68e2 * c(1) - 0.1244724001e10/0.21126554976e11 * c(3) + 0.752806667e9/0.21126554976e11 * c(4) 0.49579087e8/0.10149031312e11 * c(3) - 0.49579087e8/0.10149031312e11 * c(4) -c(4)/0.784e3 + c(3)/0.784e3; -0.59e2/0.68e2 * c(1) - 0.6025413881e10/0.21126554976e11 * c(3) - 0.537416663e9/0.7042184992e10 * c(4) 0.3481e4/0.3264e4 * c(1) + 0.9258282831623875e16/0.7669235228057664e16 * c(3) + 0.236024329996203e15/0.1278205871342944e16 * c(4) -0.59e2/0.408e3 * c(1) - 0.29294615794607e14/0.29725717938208e14 * c(3) - 0.2944673881023e13/0.29725717938208e14 * c(4) -0.59e2/0.1088e4 * c(1) + 0.260297319232891e15/0.2556411742685888e16 * c(3) - 0.60834186813841e14/0.1278205871342944e16 * c(4) -0.1328188692663e13/0.37594290333616e14 * c(3) + 0.1328188692663e13/0.37594290333616e14 * c(4) -0.8673e4/0.2904112e7 * c(3) + 0.8673e4/0.2904112e7 * c(4); @@ -136,26 +130,12 @@ end D2 = @D2_fun; - S2_U=[2 -5 4 -1;]/h^2; - S2_1=sparse(1,m); - S2_1(1:4)=S2_U; - S2_m=sparse(1,m); - S2_m(m-3:m)=fliplr(S2_U); - S2_1 = S2_1'; - S2_m = S2_m'; - m3 = -1/6; - m2 = 2; - m1 = -13/2; - m0 = 28/3; -% M4=m3*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3))+m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0); - stencil = [m3,m2,m1,m0,m1,m2,m3]; - d = (length(stencil)-1)/2; - diags = -d:d; + % Fourth derivative + stencil = [-1/6,2,-13/2, 28/3,-13/2,2,-1/6]; + diags = -3:3; M4 = stripeMatrix(stencil, diags, m); - %M4=(-1/6*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3) ) + 2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2)) -13/2*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1)) + 28/3*diag(ones(m,1),0)); - M4_U = [ 0.5762947e7/0.2316384e7 -0.6374287e7/0.1158192e7 0.573947e6/0.165456e6 -0.124637e6/0.289548e6 0.67979e5/0.2316384e7 -0.60257e5/0.1158192e7; -0.6374287e7/0.1158192e7 0.30392389e8/0.2316384e7 -0.2735053e7/0.289548e6 0.273109e6/0.165456e6 0.83767e5/0.1158192e7 0.245549e6/0.2316384e7; @@ -166,22 +146,8 @@ ]; M4(1:6,1:6) = M4_U; - - M4(m-5:m,m-5:m) = rot90( M4_U ,2 ); - M4 = M4/h^3; + M4(m-5:m,m-5:m) = rot90(M4_U, 2); + M4 = 1/h^3*M4; - S3_U = [-1 3 -3 1;]/h^3; - S3_1 = sparse(1,m); - S3_1(1:4)=S3_U; - S3_m = sparse(1,m); - S3_m(m-3:m) = fliplr(-S3_U); - S3_1 = S3_1'; - S3_m = S3_m'; - - D4=HI*(M4-e_1*S3_1'+e_m*S3_m' + S_1*S2_1'-S_m*S2_m'); - - - - - + D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r'); end