changeset 958:72cd29107a9a feature/poroelastic

Temporary changes in multiblock.DiffOp. Change traction operators in Elastic2dvariable to be true boundary operators. But adjoint FD conv test fails for dirichlet BC so need to debug!
author Martin Almquist <malmquist@stanford.edu>
date Wed, 05 Dec 2018 18:58:10 -0800
parents e30aaa4a3e09
children c226fb8c2b8a
files +multiblock/DiffOp.m +scheme/Elastic2dVariable.m
diffstat 2 files changed, 98 insertions(+), 27 deletions(-) [+]
line wrap: on
line diff
--- a/+multiblock/DiffOp.m	Wed Nov 28 14:04:31 2018 -0800
+++ b/+multiblock/DiffOp.m	Wed Dec 05 18:58:10 2018 -0800
@@ -170,6 +170,50 @@
             end
         end
 
+        % Get a boundary cell of operators, specified by opName for the given boundary/BoundaryGroup
+        function opCell = getBoundaryCellOperator(obj, opName, boundary, blockmatrixDiv)
+            default_arg('blockmatrixDiv', obj.blockmatrixDiv);
+
+            % Get size of cell
+            switch class(boundary)
+                case 'cell'
+                    blockId = boundary{1};
+                    localCell = obj.diffOps{blockId}.get_boundary_operator(opName, boundary{2});
+                case 'multiblock.BoundaryGroup'
+                    blockId = boundary{1}{1};
+                    localCell = obj.diffOps{blockId}.get_boundary_operator(opName, boundary{1}{2});
+                otherwise
+                    error('Unknown boundary indentifier')
+            end
+
+            % Loop over cell elements and build the boundary operator in each cell
+            opCell = cell(size(localCell));
+            for i = 1:numel(opCell)
+                switch class(boundary)
+                    case 'cell'
+                        blockId = boundary{1};
+                        localOpCell = obj.diffOps{blockId}.get_boundary_operator(opName, boundary{2});
+                        localOp = localOpCell{i};
+
+                        div = {blockmatrixDiv, size(localOp,2)}
+                        blockOp = blockmatrix.zero(div);
+                        blockOp{blockId,1} = localOp;
+                        op = blockmatrix.toMatrix(blockOp);
+                        opCell{i} = op;
+
+                    case 'multiblock.BoundaryGroup'
+                        op = sparse(size(obj.D,1),0);
+                        for j = 1:length(boundary)
+                            localCell = obj.getBoundaryCellOperator(opName, boundary{j}, blockmatrixDiv);
+                            op = [op, localCell{i}];
+                        end
+                        opCell{i} = op;
+                    otherwise
+                        error('Unknown boundary indentifier')
+                end
+            end
+        end
+
         function op = getBoundaryQuadrature(obj, boundary)
             opName = 'H';
             switch class(boundary)
--- a/+scheme/Elastic2dVariable.m	Wed Nov 28 14:04:31 2018 -0800
+++ b/+scheme/Elastic2dVariable.m	Wed Dec 05 18:58:10 2018 -0800
@@ -238,20 +238,28 @@
                 tau_l{j} = cell(dim,1);
                 tau_r{j} = cell(dim,1);
 
+                LAMBDA_l = e_l{j}'*LAMBDA*e_l{j};
+                LAMBDA_r = e_r{j}'*LAMBDA*e_r{j};
+                MU_l = e_l{j}'*MU*e_l{j};
+                MU_r = e_r{j}'*MU*e_r{j};
+
+                [~, n_l] = size(e_l{j});
+                [~, n_r] = size(e_r{j});
+
                 % Loop over components
                 for i = 1:dim
-                    tau_l{j}{i} = sparse(m_tot,dim*m_tot);
-                    tau_r{j}{i} = sparse(m_tot,dim*m_tot);
+                    tau_l{j}{i} = sparse(n_l, dim*m_tot);
+                    tau_r{j}{i} = sparse(n_r, dim*m_tot);
                     for k = 1:dim
                         T_l{j}{i,k} = ...
-                        -d(i,j)*LAMBDA*(d(i,k)*e_l{k}*d1_l{k}' + db(i,k)*D1{k})...
-                        -d(j,k)*MU*(d(i,j)*e_l{i}*d1_l{i}' + db(i,j)*D1{i})...
-                        -d(i,k)*MU*e_l{j}*d1_l{j}';
+                        -d(i,j)*LAMBDA_l*(d(i,k)*d1_l{k}' + db(i,k)*e_l{j}'*D1{k})...
+                        -d(j,k)*MU_l*(d(i,j)*d1_l{i}' + db(i,j)*e_l{j}'*D1{i})...
+                        -d(i,k)*MU_l*d1_l{j}';
 
                         T_r{j}{i,k} = ...
-                        d(i,j)*LAMBDA*(d(i,k)*e_r{k}*d1_r{k}' + db(i,k)*D1{k})...
-                        +d(j,k)*MU*(d(i,j)*e_r{i}*d1_r{i}' + db(i,j)*D1{i})...
-                        +d(i,k)*MU*e_r{j}*d1_r{j}';
+                        d(i,j)*LAMBDA_r*(d(i,k)*d1_r{k}' + db(i,k)*e_r{j}'*D1{k})...
+                        +d(j,k)*MU_r*(d(i,j)*d1_r{i}' + db(i,j)*e_r{j}'*D1{i})...
+                        +d(i,k)*MU_r*d1_r{j}';
 
                         tau_l{j}{i} = tau_l{j}{i} + T_l{j}{i,k}*E{k}';
                         tau_r{j}{i} = tau_r{j}{i} + T_r{j}{i,k}*E{k}';
@@ -259,6 +267,19 @@
 
                 end
             end
+
+            % Transpose T and tau to match boundary operator convention
+            for i = 1:dim
+                for j = 1:dim
+                    tau_l{i}{j} = transpose(tau_l{i}{j});
+                    tau_r{i}{j} = transpose(tau_r{i}{j});
+                    for k = 1:dim
+                        T_l{i}{j,k} = transpose(T_l{i}{j,k});
+                        T_r{i}{j,k} = transpose(T_r{i}{j,k});
+                    end
+                end
+            end
+
             obj.T_l = T_l;
             obj.T_r = T_r;
             obj.tau_l = tau_l;
@@ -344,16 +365,16 @@
 
                 % Loop over components that Dirichlet penalties end up on
                 for i = 1:dim
-                    C = T{k,i};
+                    C = transpose(T{k,i});
                     A = -d(i,k)*alpha(i,j);
-                    B = A + C;
+                    B = A + e*C;
                     closure = closure + E{i}*RHOi*Hi*B'*e*H_gamma*(e'*E{k}' );
                     penalty = penalty - E{i}*RHOi*Hi*B'*e*H_gamma;
                 end
 
             % Free boundary condition
             case {'F','f','Free','free','traction','Traction','t','T'}
-                    closure = closure - E{k}*RHOi*Hi*e*H_gamma* (e'*tau{k} );
+                    closure = closure - E{k}*RHOi*Hi*e*H_gamma*tau{k}';
                     penalty = penalty + E{k}*RHOi*Hi*e*H_gamma;
 
             % Unknown boundary condition
@@ -434,8 +455,8 @@
 
                 % Loop over components that we have interface conditions on
                 for k = 1:dim
-                    closure = closure + 1/2*E{i}*RHOi*Hi*T{k,i}'*e*H_gamma*e'*E{k}';
-                    penalty = penalty - 1/2*E{i}*RHOi*Hi*T{k,i}'*e*H_gamma*e_v'*E_v{k}';
+                    closure = closure + 1/2*E{i}*RHOi*Hi*T{k,i}*H_gamma*e'*E{k}';
+                    penalty = penalty - 1/2*E{i}*RHOi*Hi*T{k,i}*H_gamma*e_v'*E_v{k}';
                 end
             end
         end
@@ -477,37 +498,37 @@
                 op = {op};
             end
 
-            for i = 1:length(op)
-                switch op{i}
+            for k = 1:length(op)
+                switch op{k}
                     case 'e'
                         switch boundary
                             case {'w','W','west','West','s','S','south','South'}
-                                varargout{i} = obj.e_l{j};
+                                varargout{k} = obj.e_l{j};
                             case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
-                                varargout{i} = obj.e_r{j};
+                                varargout{k} = obj.e_r{j};
                         end
                     case 'd'
                         switch boundary
                             case {'w','W','west','West','s','S','south','South'}
-                                varargout{i} = obj.d1_l{j};
+                                varargout{k} = obj.d1_l{j};
                             case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
-                                varargout{i} = obj.d1_r{j};
+                                varargout{k} = obj.d1_r{j};
                         end
                     case 'H'
-                        varargout{i} = obj.H_boundary{j};
+                        varargout{k} = obj.H_boundary{j};
                     case 'T'
                         switch boundary
                             case {'w','W','west','West','s','S','south','South'}
-                                varargout{i} = obj.T_l{j};
+                                varargout{k} = obj.T_l{j};
                             case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
-                                varargout{i} = obj.T_r{j};
+                                varargout{k} = obj.T_r{j};
                         end
                     case 'tau'
                         switch boundary
                             case {'w','W','west','West','s','S','south','South'}
-                                varargout{i} = obj.tau_l{j};
+                                varargout{k} = obj.tau_l{j};
                             case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
-                                varargout{i} = obj.tau_r{j};
+                                varargout{k} = obj.tau_r{j};
                         end
                     case 'alpha'
                         % alpha = alpha(i,j) is the penalty strength for displacement BC.
@@ -526,13 +547,19 @@
 
                         d = @kroneckerDelta;  % Kronecker delta
                         db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta
-                        alpha = @(i,j) tuning*( d(i,j)* a_lambda*LAMBDA ...
+                        alpha = cell(obj.dim, obj.dim);
+
+                        for i = 1:obj.dim
+                            for j = 1:obj.dim
+                                alpha{i,j} = tuning*( d(i,j)* a_lambda*LAMBDA ...
                                               + d(i,j)* a_mu_i*MU ...
                                               + db(i,j)*a_mu_ij*MU );
+                            end
+                        end
 
-                        varargout{i} = alpha;
+                        varargout{k} = alpha;
                     otherwise
-                        error(['No such operator: operator = ' op{i}]);
+                        error(['No such operator: operator = ' op{k}]);
                 end
             end