changeset 492:6b95a894cbd7 feature/quantumTriangles

fixed a bug in the metric coefficients but something is wrong at the boundaries
author Ylva Rydin <ylva.rydin@telia.com>
date Wed, 15 Feb 2017 11:21:04 +0100
parents 26125cfefe11
children 6b8297f66c91
files +scheme/Schrodinger2dCurve.m +scheme/Schrodinger2dCurve.m~
diffstat 2 files changed, 17 insertions(+), 285 deletions(-) [+]
line wrap: on
line diff
--- a/+scheme/Schrodinger2dCurve.m	Fri Feb 10 14:29:53 2017 +0100
+++ b/+scheme/Schrodinger2dCurve.m	Wed Feb 15 11:21:04 2017 +0100
@@ -19,7 +19,7 @@
         D1_v, D1_u
         D2_v, D2_u
         Du, Dv
-        
+        x,y
  
         e_w, e_e, e_s, e_n
         du_w, dv_w
@@ -125,6 +125,8 @@
             [x_tau,y_tau]= ti_tau.map(lcoords(1:obj.m_v:end,1),lcoords(1:obj.m_u,2));
             x = reshape(obj.xm,obj.m_tot,1);
             y = reshape(obj.ym,obj.m_tot,1);
+            obj.x=x;
+            obj.y=y;
 
             x_tau = reshape(x_tau,obj.m_tot,1);
             y_tau = reshape(y_tau,obj.m_tot,1); 
@@ -167,11 +169,18 @@
          
             Ji = spdiags(1./J, 0, obj.m_tot, obj.m_tot);
             obj.Ji=Ji;
-            obj.g_1 = x_tau.*y_v-y_tau.*x_v;
-            obj.g_2 = -x_tau.*y_u + y_tau.*x_u;
+            obj.g_1 = x_v.*y_tau-x_tau.*y_v;
+            obj.g_2 = x_tau.*y_u - y_tau.*x_u;
+            
+            b1 = spdiags(obj.g_1, 0, obj.m_tot, obj.m_tot);
+            b2 = spdiags(obj.g_2, 0, obj.m_tot, obj.m_tot);
+            
+            b1_u = spdiags(obj.Du*obj.g_1, 0, obj.m_tot, obj.m_tot);
+            b2_v = spdiags(obj.Dv*obj.g_2, 0, obj.m_tot, obj.m_tot);
             
             %Add the flux splitting
-            D = Ji*(obj.g_1.*obj.Du + obj.g_2.*obj.Dv + 1i*obj.c^2*(Duu + Duv + Dvu + Dvv)); %% g_1' och g_2'?
+          % D = Ji*(-b1*obj.Du  -b2*obj.Dv + 1i*obj.c^2*(Duu + Duv + Dvu + Dvv)); 
+             D = Ji*(-1/2*(b1*obj.Du-b1_u+obj.Du*b1) - 1/2*(b2*obj.Dv - b2_v +obj.Dv*b2) + 1i*obj.c^2*(Duu + Duv + Dvu + Dvv)); 
             
 %             obj.gamm_u = h_u*ops_u.borrowing.M.d1;
 %             obj.gamm_v = h_v*ops_v.borrowing.M.d1;
@@ -194,12 +203,11 @@
                     a = spdiag(g);
                     tau2 =  (-1*s*a - abs(a))/4;
 
-                    penalty_parameter_1 = 1*1i*halfnorm_inv_n*halfnorm_inv_t*e*F'*halfnorm_t*e;
-                    penalty_parameter_2 = halfnorm_inv_n*e*tau2;
+                    penalty_parameter_1 = 1*1i*halfnorm_inv_n*halfnorm_inv_t*F*e'*halfnorm_t*e;
+                     penalty_parameter_2 = halfnorm_inv_n*e*tau2;
 
-                    closure = obj.Ji*obj.c^2 * penalty_parameter_1*e' +obj.Ji* penalty_parameter_2*e';
-                   % penalty = -obj.Ji*obj.c^2 * penalty_parameter_2;
-                   penalty=0;
+                    closure = obj.Ji*obj.c^2 * penalty_parameter_1*e' + obj.Ji* penalty_parameter_2*e';
+                    penalty = -obj.Ji*obj.c^2 * penalty_parameter_1*e'+  obj.Ji*penalty_parameter_2*e';
                 
         end
         
--- a/+scheme/Schrodinger2dCurve.m~	Fri Feb 10 14:29:53 2017 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,276 +0,0 @@
-classdef Schrodinger2dCurve < scheme.Scheme
-    properties
-        m % Number of points in each direction, possibly a vector
-        h % Grid spacing
-
-        grid
-        xm, ym
-
-        order % Order accuracy for the approximation
-
-        D % non-stabalized scheme operator
-        M % Derivative norm
-        H % Discrete norm
-        Hi
-        H_u, H_v % Norms in the x and y directions
-        Hu,Hv % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir.
-        Hi_u, Hi_v
-        Hiu, Hiv
-        D1_v, D1_u
-        D2_v, D2_u
-        Du, Dv
-        
- 
-        e_w, e_e, e_s, e_n
-        du_w, dv_w
-        du_e, dv_e
-        du_s, dv_s
-        du_n, dv_n
-        g_1, g_2
-        c
-        a11, a12, a22
-        m_tot, m_u, m_v
-        p,p_tau
-        Ji
-    end
-
-    methods
-        function obj = Schrodinger2dCurve(g ,order, opSet,p,p_tau)
-            default_arg('opSet',@sbp.D2Variable);
-            default_arg('c', 1);
-
-            obj.p=p;
-            obj.p_tau=p_tau;
-            obj.c=1;
-            
-            m = g.size();
-            obj.m_u = m(1);
-            obj.m_v = m(2);
-            obj.m_tot = g.N();
-
-            h = g.scaling();
-            h_u = h(1);
-            h_v = h(2);
-
-            % Operators
-            ops_u = opSet(obj.m_u, {0, 1}, order);
-            ops_v = opSet(obj.m_v, {0, 1}, order);
-
-            I_u = speye(obj.m_u);
-            I_v = speye(obj.m_v);
-
-            obj.D1_u = ops_u.D1;
-            obj.D2_u = ops_u.D2;
-            
-            H_u =  ops_u.H;
-            Hi_u = ops_u.HI;
-            e_l_u = ops_u.e_l;
-            e_r_u = ops_u.e_r;
-            d1_l_u = ops_u.d1_l;
-            d1_r_u = ops_u.d1_r;
-
-            obj.D1_v = ops_v.D1;
-            obj.D2_v = ops_v.D2;
-            H_v =  ops_v.H;
-            Hi_v = ops_v.HI;
-            e_l_v = ops_v.e_l;
-            e_r_v = ops_v.e_r;
-            d1_l_v = ops_v.d1_l;
-            d1_r_v = ops_v.d1_r;
-
-            obj.Du = kr(obj.D1_u,I_v);
-            obj.Dv = kr(I_u,obj.D1_v);
-
-            obj.H = kr(H_u,H_v);
-            obj.Hi = kr(Hi_u,Hi_v);
-            obj.Hu  = kr(H_u,I_v);
-            obj.Hv  = kr(I_u,H_v);
-            obj.Hiu = kr(Hi_u,I_v);
-            obj.Hiv = kr(I_u,Hi_v);
-
-            obj.e_w  = kr(e_l_u,I_v);
-            obj.e_e  = kr(e_r_u,I_v);
-            obj.e_s  = kr(I_u,e_l_v);
-            obj.e_n  = kr(I_u,e_r_v);
-            obj.du_w = kr(d1_l_u,I_v);
-            obj.dv_w = (obj.e_w'*obj.Dv)';
-            obj.du_e = kr(d1_r_u,I_v);
-            obj.dv_e = (obj.e_e'*obj.Dv)';
-            obj.du_s = (obj.e_s'*obj.Du)';
-            obj.dv_s = kr(I_u,d1_l_v);
-            obj.du_n = (obj.e_n'*obj.Du)';
-            obj.dv_n = kr(I_u,d1_r_v);
-
-%             obj.x_u = x_u;
-%             obj.x_v = x_v;
-%             obj.y_u = y_u;
-%             obj.y_v = y_v;
-
-            obj.m = m;
-            obj.h = [h_u h_v];
-            obj.order = order;
-            obj.grid = g;
-
-
-        end
-
-        
-        function [D ]= d_fun(obj,t)
-                        % Metric derivatives
-            ti = parametrization.Ti.points(obj.p.p1(t),obj.p.p2(t),obj.p.p3(t),obj.p.p4(t));
-            ti_tau = parametrization.Ti.points(obj.p_tau.p1(t),obj.p_tau.p2(t),obj.p_tau.p3(t),obj.p_tau.p4(t));
-            
-            lcoords=points(obj.grid);
-            [obj.xm,obj.ym]= ti.map(lcoords(1:obj.m_v:end,1),lcoords(1:obj.m_u,2));
-            [x_tau,y_tau]= ti_tau.map(lcoords(1:obj.m_v:end,1),lcoords(1:obj.m_u,2));
-            x = reshape(obj.xm,obj.m_tot,1);
-            y = reshape(obj.ym,obj.m_tot,1);
-
-            x_tau = reshape(x_tau,obj.m_tot,1);
-            y_tau = reshape(y_tau,obj.m_tot,1); 
-            
-            x_u = obj.Du*x;
-            x_v = obj.Dv*x;
-            y_u = obj.Du*y;
-            y_v = obj.Dv*y;
-
-            J = x_u.*y_v - x_v.*y_u;
-            a11 =  1./J.* (x_v.^2  + y_v.^2);
-            a12 = -1./J .* (x_u.*x_v + y_u.*y_v);
-            a22 =  1./J .* (x_u.^2  + y_u.^2);
-          
-            obj.a11=a11;
-            obj.a12=a12;
-            obj.a22=a22;
-            
-            % Assemble full operators
-            L_12 = spdiags(a12, 0, obj.m_tot, obj.m_tot);
-            Duv = obj.Du*L_12*obj.Dv;
-            Dvu = obj.Dv*L_12*obj.Du;
-
-            Duu = sparse(obj.m_tot);
-            Dvv = sparse(obj.m_tot);
-            ind = grid.funcToMatrix(obj.grid, 1:obj.m_tot);
-
-
-            for i = 1:obj.m_v
-                D = obj.D2_u(a11(ind(:,i)));
-                p = ind(:,i);
-                Duu(p,p) = D;
-            end
-
-            for i = 1:obj.m_u
-                D = obj.D2_v(a22(ind(i,:)));
-                p = ind(i,:);
-                Dvv(p,p) = D;
-            end
-         
-            Ji = spdiags(1./J, 0, obj.m_tot, obj.m_tot);
-            obj.Ji=Ji;
-            obj.g_1 = x_tau.*y_v-y_tau.*x_v;
-            obj.g_2 = -x_tau.*y_u + y_tau.*x_u;
-            
-            %Add the flux splitting
-            D = Ji*(obj.g_1.*obj.Du + obj.g_2.*obj.Dv + 1i*obj.c^2*(Duu + Duv + Dvu + Dvv)); %% g_1' och g_2'?
-            
-%             obj.gamm_u = h_u*ops_u.borrowing.M.d1;
-%             obj.gamm_v = h_v*ops_v.borrowing.M.d1;
-            
-        end
-
-        % Closure functions return the opertors applied to the own doamin to close the boundary
-        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
-        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
-        %       type                is a string specifying the type of boundary condition if there are several.
-        %       data                is a function returning the data that should be applied at the boundary.
-        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
-        %       neighbour_boundary  is a string specifying which boundary to interface to.
-        function [closure, penalty] = boundary_condition(obj, boundary)
-                    [e, d_n, d_t, coeff_t, s, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t,g] = obj.get_boundary_ops(boundary);
-                 
-                    a_t = spdiag(coeff_t);
-                    F = (s  * d_n' + s * a_t*d_t')';
-                    tau1  = 1;       
-                    a = spdiag(g);
-                    tau2 =  (-1*s*a - abs(a))/4;
-
-                    penalty_parameter_1 = 1i*halfnorm_inv_n*halfnorm_inv_t*e*e'*F*halfnorm_t;
-                    penalty_parameter_2 = halfnorm_inv_n*e*tau2;
-
-                    closure = obj.Ji*obj.c^2 * penalty_parameter_1*e' +obj.Ji* penalty_parameter_2*e';
-                   % penalty = -obj.Ji*obj.c^2 * penalty_parameter_2;
-                   penalty=0;
-                
-        end
-        
-        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
-        end
-
-        function [e, d_n, d_t, coeff_t, s,  halfnorm_inv_n, halfnorm_inv_t, halfnorm_t,g, I] = get_boundary_ops(obj, boundary)
-
-            % gridMatrix = zeros(obj.m(2),obj.m(1));
-            % gridMatrix(:) = 1:numel(gridMatrix);
-
-            ind = grid.funcToMatrix(obj.grid, 1:prod(obj.m));
-
-            switch boundary
-                case 'w'
-                    e = obj.e_w;
-                    d_n = obj.du_w;
-                    d_t = obj.dv_w;
-                    s = -1;
-
-                    I = ind(1,:);
-                    coeff_t = obj.a12(I);
-                    g=obj.g_1(I);
-                case 'e'
-                    e = obj.e_e;
-                    d_n = obj.du_e;
-                    d_t = obj.dv_e;
-                    s = 1;
-
-                    I = ind(end,:);
-                    coeff_t = obj.a12(I);
-                    g=obj.g_1(I);
-                case 's'
-                    e = obj.e_s;
-                    d_n = obj.dv_s;
-                    d_t = obj.du_s;
-                    s = -1;
-
-                    I = ind(:,1)';
-                    coeff_t = obj.a12(I);
-                    g=obj.g_2(I);
-                case 'n'
-                    e = obj.e_n;
-                    d_n = obj.dv_n;
-                    d_t = obj.du_n;
-                    s = 1;
-
-                    I = ind(:,end)';
-                    coeff_t = obj.a12(I);
-                    g=obj.g_2(I);
-                otherwise
-                    error('No such boundary: boundary = %s',boundary);
-            end
-
-            switch boundary
-                case {'w','e'}
-                    halfnorm_inv_n = obj.Hiu;
-                    halfnorm_inv_t = obj.Hiv;
-                    halfnorm_t = obj.Hv;
-                   
-                case {'s','n'}
-                    halfnorm_inv_n = obj.Hiv;
-                    halfnorm_inv_t = obj.Hiu;
-                    halfnorm_t = obj.Hu;
-            end
-        end
-
-        function N = size(obj)
-            N = prod(obj.m);
-        end
-
-
-    end
-end
\ No newline at end of file