view +scheme/Schrodinger2dCurve.m @ 492:6b95a894cbd7 feature/quantumTriangles

fixed a bug in the metric coefficients but something is wrong at the boundaries
author Ylva Rydin <ylva.rydin@telia.com>
date Wed, 15 Feb 2017 11:21:04 +0100
parents 26125cfefe11
children 6b8297f66c91
line wrap: on
line source

classdef Schrodinger2dCurve < scheme.Scheme
    properties
        m % Number of points in each direction, possibly a vector
        h % Grid spacing

        grid
        xm, ym

        order % Order accuracy for the approximation

        D % non-stabalized scheme operator
        M % Derivative norm
        H % Discrete norm
        Hi
        H_u, H_v % Norms in the x and y directions
        Hu,Hv % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir.
        Hi_u, Hi_v
        Hiu, Hiv
        D1_v, D1_u
        D2_v, D2_u
        Du, Dv
        x,y
 
        e_w, e_e, e_s, e_n
        du_w, dv_w
        du_e, dv_e
        du_s, dv_s
        du_n, dv_n
        g_1, g_2
        c
        a11, a12, a22
        m_tot, m_u, m_v
        p,p_tau
        Ji
    end

    methods
        function obj = Schrodinger2dCurve(g ,order, opSet,p,p_tau)
            default_arg('opSet',@sbp.D2Variable);
            default_arg('c', 1);

            obj.p=p;
            obj.p_tau=p_tau;
            obj.c=1;
            
            m = g.size();
            obj.m_u = m(1);
            obj.m_v = m(2);
            obj.m_tot = g.N();

            h = g.scaling();
            h_u = h(1);
            h_v = h(2);

            % Operators
            ops_u = opSet(obj.m_u, {0, 1}, order);
            ops_v = opSet(obj.m_v, {0, 1}, order);

            I_u = speye(obj.m_u);
            I_v = speye(obj.m_v);

            obj.D1_u = ops_u.D1;
            obj.D2_u = ops_u.D2;
            
            H_u =  ops_u.H;
            Hi_u = ops_u.HI;
            e_l_u = ops_u.e_l;
            e_r_u = ops_u.e_r;
            d1_l_u = ops_u.d1_l;
            d1_r_u = ops_u.d1_r;

            obj.D1_v = ops_v.D1;
            obj.D2_v = ops_v.D2;
            H_v =  ops_v.H;
            Hi_v = ops_v.HI;
            e_l_v = ops_v.e_l;
            e_r_v = ops_v.e_r;
            d1_l_v = ops_v.d1_l;
            d1_r_v = ops_v.d1_r;

            obj.Du = kr(obj.D1_u,I_v);
            obj.Dv = kr(I_u,obj.D1_v);

            obj.H = kr(H_u,H_v);
            obj.Hi = kr(Hi_u,Hi_v);
            obj.Hu  = kr(H_u,I_v);
            obj.Hv  = kr(I_u,H_v);
            obj.Hiu = kr(Hi_u,I_v);
            obj.Hiv = kr(I_u,Hi_v);

            obj.e_w  = kr(e_l_u,I_v);
            obj.e_e  = kr(e_r_u,I_v);
            obj.e_s  = kr(I_u,e_l_v);
            obj.e_n  = kr(I_u,e_r_v);
            obj.du_w = kr(d1_l_u,I_v);
            obj.dv_w = (obj.e_w'*obj.Dv)';
            obj.du_e = kr(d1_r_u,I_v);
            obj.dv_e = (obj.e_e'*obj.Dv)';
            obj.du_s = (obj.e_s'*obj.Du)';
            obj.dv_s = kr(I_u,d1_l_v);
            obj.du_n = (obj.e_n'*obj.Du)';
            obj.dv_n = kr(I_u,d1_r_v);

%             obj.x_u = x_u;
%             obj.x_v = x_v;
%             obj.y_u = y_u;
%             obj.y_v = y_v;

            obj.m = m;
            obj.h = [h_u h_v];
            obj.order = order;
            obj.grid = g;


        end

        
        function [D ]= d_fun(obj,t)
                        % Metric derivatives
            ti = parametrization.Ti.points(obj.p.p1(t),obj.p.p2(t),obj.p.p3(t),obj.p.p4(t));
            ti_tau = parametrization.Ti.points(obj.p_tau.p1(t),obj.p_tau.p2(t),obj.p_tau.p3(t),obj.p_tau.p4(t));
            
            lcoords=points(obj.grid);
            [obj.xm,obj.ym]= ti.map(lcoords(1:obj.m_v:end,1),lcoords(1:obj.m_u,2));
            [x_tau,y_tau]= ti_tau.map(lcoords(1:obj.m_v:end,1),lcoords(1:obj.m_u,2));
            x = reshape(obj.xm,obj.m_tot,1);
            y = reshape(obj.ym,obj.m_tot,1);
            obj.x=x;
            obj.y=y;

            x_tau = reshape(x_tau,obj.m_tot,1);
            y_tau = reshape(y_tau,obj.m_tot,1); 
            
            x_u = obj.Du*x;
            x_v = obj.Dv*x;
            y_u = obj.Du*y;
            y_v = obj.Dv*y;

            J = x_u.*y_v - x_v.*y_u;
            a11 =  1./J.* (x_v.^2  + y_v.^2);
            a12 = -1./J .* (x_u.*x_v + y_u.*y_v);
            a22 =  1./J .* (x_u.^2  + y_u.^2);
          
            obj.a11=a11;
            obj.a12=a12;
            obj.a22=a22;
            
            % Assemble full operators
            L_12 = spdiags(a12, 0, obj.m_tot, obj.m_tot);
            Duv = obj.Du*L_12*obj.Dv;
            Dvu = obj.Dv*L_12*obj.Du;

            Duu = sparse(obj.m_tot);
            Dvv = sparse(obj.m_tot);
            ind = grid.funcToMatrix(obj.grid, 1:obj.m_tot);


            for i = 1:obj.m_v
                D = obj.D2_u(a11(ind(:,i)));
                p = ind(:,i);
                Duu(p,p) = D;
            end

            for i = 1:obj.m_u
                D = obj.D2_v(a22(ind(i,:)));
                p = ind(i,:);
                Dvv(p,p) = D;
            end
         
            Ji = spdiags(1./J, 0, obj.m_tot, obj.m_tot);
            obj.Ji=Ji;
            obj.g_1 = x_v.*y_tau-x_tau.*y_v;
            obj.g_2 = x_tau.*y_u - y_tau.*x_u;
            
            b1 = spdiags(obj.g_1, 0, obj.m_tot, obj.m_tot);
            b2 = spdiags(obj.g_2, 0, obj.m_tot, obj.m_tot);
            
            b1_u = spdiags(obj.Du*obj.g_1, 0, obj.m_tot, obj.m_tot);
            b2_v = spdiags(obj.Dv*obj.g_2, 0, obj.m_tot, obj.m_tot);
            
            %Add the flux splitting
          % D = Ji*(-b1*obj.Du  -b2*obj.Dv + 1i*obj.c^2*(Duu + Duv + Dvu + Dvv)); 
             D = Ji*(-1/2*(b1*obj.Du-b1_u+obj.Du*b1) - 1/2*(b2*obj.Dv - b2_v +obj.Dv*b2) + 1i*obj.c^2*(Duu + Duv + Dvu + Dvv)); 
            
%             obj.gamm_u = h_u*ops_u.borrowing.M.d1;
%             obj.gamm_v = h_v*ops_v.borrowing.M.d1;
            
        end

        % Closure functions return the opertors applied to the own doamin to close the boundary
        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
        %       type                is a string specifying the type of boundary condition if there are several.
        %       data                is a function returning the data that should be applied at the boundary.
        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
        %       neighbour_boundary  is a string specifying which boundary to interface to.
        function [closure, penalty] = boundary_condition(obj, boundary)
                    [e, d_n, d_t, coeff_t, s, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t,g] = obj.get_boundary_ops(boundary);
                 
                    a_t = spdiag(coeff_t);
                    F = (s  * d_n' + s * a_t*d_t')';
                    tau1  = 1;       
                    a = spdiag(g);
                    tau2 =  (-1*s*a - abs(a))/4;

                    penalty_parameter_1 = 1*1i*halfnorm_inv_n*halfnorm_inv_t*F*e'*halfnorm_t*e;
                     penalty_parameter_2 = halfnorm_inv_n*e*tau2;

                    closure = obj.Ji*obj.c^2 * penalty_parameter_1*e' + obj.Ji* penalty_parameter_2*e';
                    penalty = -obj.Ji*obj.c^2 * penalty_parameter_1*e'+  obj.Ji*penalty_parameter_2*e';
                
        end
        
        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
        end

        function [e, d_n, d_t, coeff_t, s,  halfnorm_inv_n, halfnorm_inv_t, halfnorm_t,g, I] = get_boundary_ops(obj, boundary)

            % gridMatrix = zeros(obj.m(2),obj.m(1));
            % gridMatrix(:) = 1:numel(gridMatrix);

            ind = grid.funcToMatrix(obj.grid, 1:prod(obj.m));

            switch boundary
                case 'w'
                    e = obj.e_w;
                    d_n = obj.du_w;
                    d_t = obj.dv_w;
                    s = -1;

                    I = ind(1,:);
                    coeff_t = obj.a12(I);
                    g=obj.g_1(I);
                case 'e'
                    e = obj.e_e;
                    d_n = obj.du_e;
                    d_t = obj.dv_e;
                    s = 1;

                    I = ind(end,:);
                    coeff_t = obj.a12(I);
                    g=obj.g_1(I);
                case 's'
                    e = obj.e_s;
                    d_n = obj.dv_s;
                    d_t = obj.du_s;
                    s = -1;

                    I = ind(:,1)';
                    coeff_t = obj.a12(I);
                    g=obj.g_2(I);
                case 'n'
                    e = obj.e_n;
                    d_n = obj.dv_n;
                    d_t = obj.du_n;
                    s = 1;

                    I = ind(:,end)';
                    coeff_t = obj.a12(I);
                    g=obj.g_2(I);
                otherwise
                    error('No such boundary: boundary = %s',boundary);
            end

            switch boundary
                case {'w','e'}
                    halfnorm_inv_n = obj.Hiu;
                    halfnorm_inv_t = obj.Hiv;
                    halfnorm_t = obj.Hv;
                   
                case {'s','n'}
                    halfnorm_inv_n = obj.Hiv;
                    halfnorm_inv_t = obj.Hiu;
                    halfnorm_t = obj.Hu;
            end
        end

        function N = size(obj)
            N = prod(obj.m);
        end


    end
end