Mercurial > repos > public > sbplib
changeset 313:52b4cdf27633 feature/beams
Cleaning order 2.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 23 Sep 2016 21:58:52 +0200 |
parents | 9230c056a574 |
children | 88584b0cfba1 |
files | +sbp/+implementations/d1_upwind_3.m +sbp/+implementations/d4_variable_2.m |
diffstat | 2 files changed, 45 insertions(+), 125 deletions(-) [+] |
line wrap: on
line diff
--- a/+sbp/+implementations/d1_upwind_3.m Fri Sep 23 19:14:04 2016 +0200 +++ b/+sbp/+implementations/d1_upwind_3.m Fri Sep 23 21:58:52 2016 +0200 @@ -1,12 +1,12 @@ function [H, HI, Dp, Dm, e_1, e_m] = d1_upwind_3(m,h) - + if(m<6) error('Operator requires at least 6 grid points'); end Hv = ones(m,1); Hv(1:3) = [3/8; 7/6; 23/24]; - Hv(m-2:m) = rot90(Hv(1:3),2); + Hv(m-2:m) = rot90(Hv(1:3), 2); Hv = Hv*h; H = spdiag(Hv,0); HI = spdiag(1./Hv,0);
--- a/+sbp/+implementations/d4_variable_2.m Fri Sep 23 19:14:04 2016 +0200 +++ b/+sbp/+implementations/d4_variable_2.m Fri Sep 23 21:58:52 2016 +0200 @@ -10,160 +10,80 @@ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BP = 4; - if(m<2*BP) - error(['Operator requires at least ' num2str(2*BP) ' grid points']); + if(m < 2*BP) + error('Operator requires at least %d grid points', 2*BP); end + % Norm + Hv = ones(m,1); + Hv(1) = 1/2; + Hv(m) = 1/2; + Hv = h*Hv; + H = spdiag(Hv, 0); + HI = spdiag(1./Hv, 0); - H=speye(m,m); - H(1,1)=1/2; - H(m,m)=1/2; + % Boundary operators + e_l = sparse(m,1); + e_l(1) = 1; + e_r = rot90(e_l, 2); - H=H*h; - HI=inv(H); + d1_l = sparse(m,1); + d1_l(1:3) = 1/h*[-3/2 2 -1/2]; + d1_r = -rot90(d1_l); + + d2_l = sparse(m,1); + d2_l(1:3) = 1/h^2*[1 -2 1]; + d2_r = rot90(d2_l, 2); + + d3_l = sparse(m,1); + d3_l(1:4) = 1/h^3*[-1 3 -3 1]; + d3_r = -rot90(d3_l, 2) % First derivative SBP operator, 1st order accurate at first 6 boundary points - - q1=1/2; -% Q=q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); - stencil = [-q1,0,q1]; - d = (length(stencil)-1)/2; - diags = -d:d; + stencil = [-1/2, 0, 1/2]; + diags = [-1 0 1]; Q = stripeMatrix(stencil, diags, m); - %Q=(-1/12*diag(ones(m-2,1),2)+8/12*diag(ones(m-1,1),1)-8/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2)); - - e_1=sparse(m,1); - e_1(1)=1; - e_m=sparse(m,1); - e_m(m)=1; - - D1=HI*(Q-1/2*(e_1*e_1')+1/2*(e_m*e_m')) ; - + D1 = HI*(Q-1/2*(e_1*e_1') + 1/2*(e_m*e_m')); % Second derivative, 1st order accurate at first boundary points - - % below for constant coefficients - % m1=-1;m0=2; - % M=m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0);M(1,1)=1;M(m,m)=1; - % M=M/h; - %D2=HI*(-M-e_1*S_1+e_m*S_m); - - % Below for variable coefficients - % Require a vector c with the koeffients - - S_U=[-3/2 2 -1/2]/h; - S_1=sparse(1,m); - S_1(1:3)=S_U; - S_m=sparse(1,m); - S_m(m-2:m)=fliplr(-S_U); - - S_1 = S_1'; - S_m = S_m'; - - M=sparse(m,m); - e_1 = sparse(e_1); - e_m = sparse(e_m); - S_1 = sparse(S_1); - S_m = sparse(S_m); + M = sparse(m,m); scheme_width = 3; scheme_radius = (scheme_width-1)/2; r = (1+scheme_radius):(m-scheme_radius); function D2 = D2_fun(c) - Mm1 = -c(r-1)/2 - c(r)/2; M0 = c(r-1)/2 + c(r) + c(r+1)/2; Mp1 = -c(r)/2 - c(r+1)/2; M(r,:) = spdiags([Mm1 M0 Mp1],0:2*scheme_radius,length(r),m); + M(1:2,1:2) = [c(1)/2 + c(2)/2 -c(1)/2 - c(2)/2; -c(1)/2 - c(2)/2 c(1)/2 + c(2) + c(3)/2;]; + M(m-1:m,m-1:m) = [c(m-2)/2 + c(m-1) + c(m)/2 -c(m-1)/2 - c(m)/2; -c(m-1)/2 - c(m)/2 c(m-1)/2 + c(m)/2;]; + M = 1/h*M; - M(1:2,1:2)=[c(1)/2 + c(2)/2 -c(1)/2 - c(2)/2; -c(1)/2 - c(2)/2 c(1)/2 + c(2) + c(3)/2;]; - M(m-1:m,m-1:m)=[c(m-2)/2 + c(m-1) + c(m)/2 -c(m-1)/2 - c(m)/2; -c(m-1)/2 - c(m)/2 c(m-1)/2 + c(m)/2;]; - M=M/h; - - D2=HI*(-M-c(1)*e_1*S_1'+c(m)*e_m*S_m'); + D2 = HI*(-M - c(1)*e_1*d1_l' + c(m)*e_r*d1_r'); end D2 = @D2_fun; - - - - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - - - - % Third derivative, 1st order accurate at first 6 boundary points - - q2=1/2;q1=-1; -% Q3=q2*(diag(ones(m-2,1),2)-diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); - stencil = [-q2,-q1,0,q1,q2]; - d = (length(stencil)-1)/2; - diags = -d:d; - Q3 = stripeMatrix(stencil, diags, m); - - %QQ3=(-1/8*diag(ones(m-3,1),3) + 1*diag(ones(m-2,1),2) - 13/8*diag(ones(m-1,1),1) +13/8*diag(ones(m-1,1),-1) -1*diag(ones(m-2,1),-2) + 1/8*diag(ones(m-3,1),-3)); - - - Q3_U = [ - 0 -0.13e2/0.16e2 0.7e1/0.8e1 -0.1e1/0.16e2; - 0.13e2/0.16e2 0 -0.23e2/0.16e2 0.5e1/0.8e1; - -0.7e1/0.8e1 0.23e2/0.16e2 0 -0.17e2/0.16e2; - 0.1e1/0.16e2 -0.5e1/0.8e1 0.17e2/0.16e2 0; - ]; - Q3(1:4,1:4)=Q3_U; - Q3(m-3:m,m-3:m)=rot90( -Q3_U ,2 ); - Q3=Q3/h^2; - - - - S2_U=[1 -2 1;]/h^2; - S2_1=sparse(1,m); - S2_1(1:3)=S2_U; - S2_m=sparse(1,m); - S2_m(m-2:m)=fliplr(S2_U); - S2_1 = S2_1'; - S2_m = S2_m'; - - - - D3=HI*(Q3 - e_1*S2_1' + e_m*S2_m' +1/2*(S_1*S_1') -1/2*(S_m*S_m') ) ; - - % Fourth derivative, 0th order accurate at first 6 boundary points (still - % yield 4th order convergence if stable: for example u_tt=-u_xxxx - - m2=1;m1=-4;m0=6; -% M4=m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0); - stencil = [m2,m1,m0,m1,m2]; - d = (length(stencil)-1)/2; - diags = -d:d; + % Fourth derivative, 0th order accurate at first 6 boundary points + stencil = [1, -4, 6, -4, 1]; + diags = -2:2; M4 = stripeMatrix(stencil, diags, m); - %M4=(-1/6*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3) ) + 2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2)) -13/2*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1)) + 28/3*diag(ones(m,1),0)); - - M4_U=[ - 0.13e2/0.10e2 -0.12e2/0.5e1 0.9e1/0.10e2 0.1e1/0.5e1; - -0.12e2/0.5e1 0.26e2/0.5e1 -0.16e2/0.5e1 0.2e1/0.5e1; - 0.9e1/0.10e2 -0.16e2/0.5e1 0.47e2/0.10e2 -0.17e2/0.5e1; - 0.1e1/0.5e1 0.2e1/0.5e1 -0.17e2/0.5e1 0.29e2/0.5e1; + M4_U = [ + 0.13e2/0.10e2 -0.12e2/0.5e1 0.9e1/0.10e2 0.1e1/0.5e1; + -0.12e2/0.5e1 0.26e2/0.5e1 -0.16e2/0.5e1 0.2e1/0.5e1; + 0.9e1/0.10e2 -0.16e2/0.5e1 0.47e2/0.10e2 -0.17e2/0.5e1; + 0.1e1/0.5e1 0.2e1/0.5e1 -0.17e2/0.5e1 0.29e2/0.5e1; ]; - M4(1:4,1:4)=M4_U; - - M4(m-3:m,m-3:m)=rot90( M4_U ,2 ); - M4=M4/h^3; - - S3_U=[-1 3 -3 1;]/h^3; - S3_1=sparse(1,m); - S3_1(1:4)=S3_U; - S3_m=sparse(1,m); - S3_m(m-3:m)=fliplr(-S3_U); - S3_1 = S3_1'; - S3_m = S3_m'; + M4(1:4,1:4) = M4_U; + M4(m-3:m,m-3:m) = rot90(M4_U, 2); + M4 = 1/h^3*M4; D4=HI*(M4-e_1*S3_1'+e_m*S3_m' + S_1*S2_1'-S_m*S2_m'); end