Mercurial > repos > public > sbplib
changeset 996:3b903011b1a9 feature/timesteppers
Rename time.rk.General to time.rk.Explicit and fix some errors
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 09 Jan 2019 23:01:17 +0100 |
parents | 10c5eda235b7 |
children | d4fe089b2c4a |
files | +time/+rk/Explicit.m +time/+rk/General.m |
diffstat | 2 files changed, 145 insertions(+), 147 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+time/+rk/Explicit.m Wed Jan 09 23:01:17 2019 +0100 @@ -0,0 +1,145 @@ +classdef Explicit < time.Timestepper + properties + F % RHS of the ODE + dt % Time step + t % Time point + v % Solution vector + n % Time level + scheme % The scheme used for the time stepping, e.g rk4, rk6 etc. + bt + V % All stage approximations in most recent time step + K % All stage rates in most recent time step + end + + + methods + % Timesteps v_t = F(t,v), using the specified ButcherTableau + % from t = t0 with timestep dt and initial conditions v(0) = v0 + function obj = Explicit(F, dt, t0, v0, bt) + assertType(bt, 'time.rk.ButcherTableau') + obj.F = F; + obj.dt = dt; + obj.t = t0; + obj.v = v0; + obj.n = 0; + + assert(bt.isExplicit()) + obj.bt = bt; + end + + % v: Current solution + % t: Current time + % V: All stage approximations in most recent time step + % K: All stage rates in most recent time step + % T: Time points (corresponding to V and K) in most recent time step + function [v,t] = getV(obj) + v = obj.v; + t = obj.t; + end + + function obj = step(obj) + s = obj.bt.nStages(); + a = obj.bt.a; + b = obj.bt.b; + c = obj.bt.c; + + % Compute rates K + K = zeros(length(v), s); + for i = 1:s + V_i = obj.v; + for j = 1:i-1 + V_i = V_i + dt*a(i,j)*K(:,j); + end + K(:,i) = F(t+dt*c(i), V_i); + end + + % Compute updated solution + v_next = v; + for i = 1:s + v_next = v_next + dt*b(i)*K(:,i); + end + + obj.v = v_next; + obj.t = obj.t + obj.dt; + obj.n = obj.n + 1; + end + + % TBD: Method name + % TBD: Parameter name + % + % Takes a regular step but with discreteRates(:,i) added to RHS for stage i. + % v_t = F(t,v) + discreteRates(:, ...) + % + % Also returns the stage approximations (V) and stage rates (K). + function [v,t, V, K] = stepWithDiscreteData(obj, discreteRates) + s = obj.bt.nStages(); + a = obj.bt.a; + b = obj.bt.b; + c = obj.bt.c; + + % Compute rates K and stage approximations V + K = zeros(length(v), s); + V = zeros(length(v), s); + for i = 1:s + V_i = obj.v; + for j = 1:i-1 + V_i = V_i + dt*a(i,j)*K(:,j); + end + + K_i = F(t+dt*c(i), V_i); + K_i = K_i + discreteRates(:,i); + + V(:,i) = V_i; + K(:,i) = K_i; + end + + % Compute updated updated solution + v_next = v; + for i = 1:s + v_next = v_next + dt*b(i)*K(:,i); + end + + obj.v = v_next; + obj.t = obj.t + obj.dt; + obj.n = obj.n + 1; + end + + % Returns a vector of time points, including substage points, + % in the time interval [t0, tEnd]. + % The time-step obj.dt is assumed to be aligned with [t0, tEnd] already. + function tvec = timePoints(obj, t0, tEnd) + % TBD: Should this be implemented here or somewhere else? + N = round( (tEnd-t0)/obj.dt ); + tvec = zeros(N*obj.s, 1); + s = obj.coeffs.s; + c = obj.coeffs.c; + for i = 1:N + ind = (i-1)*s+1 : i*s; + tvec(ind) = ((i-1) + c')*obj.dt; + end + end + + % Returns a vector of quadrature weights corresponding to grid points + % in time interval [t0, tEnd], substage points included. + % The time-step obj.dt is assumed to be aligned with [t0, tEnd] already. + function weights = quadWeights(obj, t0, tEnd) + % TBD: Should this be implemented here or somewhere else? + N = round( (tEnd-t0)/obj.dt ); + b = obj.coeffs.b; + weights = repmat(b', N, 1); + end + end + + methods(Static) + % TBD: Function name + function ts = methodFromStr(F, dt, t0, v0, methodStr) + try + bt = time.rk.ButcherTableau.(method); + catch + error('Runge-Kutta method ''%s'' is not implemented', methodStr) + end + + ts = time.rk.Explicit(F, dt, t0, v0, bt); + end + end +end
--- a/+time/+rk/General.m Wed Jan 09 22:57:13 2019 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,147 +0,0 @@ -classdef General < time.Timestepper - properties - F % RHS of the ODE - dt % Time step - t % Time point - v % Solution vector - n % Time level - scheme % The scheme used for the time stepping, e.g rk4, rk6 etc. - bt - V % All stage approximations in most recent time step - K % All stage rates in most recent time step - end - - - methods - % Timesteps v_t = F(t,v), using the specified ButcherTableau - % from t = t0 with timestep dt and initial conditions v(0) = v0 - function obj = General(F, dt, t0, v0, bt) - assertType(bt, 'time.rk.ButcherTableau') - obj.F = F; - obj.dt = dt; - obj.t = t0; - obj.v = v0; - obj.n = 0; - - assert(bt.isExplicit()) - obj.bt = bt; - end - - % v: Current solution - % t: Current time - % V: All stage approximations in most recent time step - % K: All stage rates in most recent time step - % T: Time points (corresponding to V and K) in most recent time step - function [v,t] = getV(obj) - v = obj.v; - t = obj.t; - end - - function obj = step(obj) - s = obj.bt.nStages(); - a = obj.bt.a; - b = obj.bt.b; - c = obj.bt.c; - - % Compute rates K - K = zeros(length(v), s); - for i = 1:s - V_i = obj.v; - for j = 1:i-1 - V_i = V_i + dt*a(i,j)*K(:,j); - end - K(:,i) = F(t+dt*c(i), V_i); - end - - % Compute updated solution - v_next = v; - for i = 1:s - v_next = v_next + dt*b(i)*K(:,i); - end - - obj.v = v_next; - obj.t = obj.t + obj.dt; - obj.n = obj.n + 1; - end - - % TBD: Method name - % TBD: Parameter name - % - % Takes a regular step but with discreteRates(:,i) added to RHS for stage i. - % v_t = F(t,v) + discreteRates(:, ...) - % - % Also returns the stage approximations (V) and stage rates (K). - function [v,t, V, K] = stepWithDiscreteData(obj, discreteRates) - s = obj.bt.nStages(); - a = obj.bt.a; - b = obj.bt.b; - c = obj.bt.c; - - % Compute rates K and stage approximations V - K = zeros(length(v), s); - V = zeros(length(v), s); - for i = 1:s - V_i = obj.v; - for j = 1:i-1 - V_i = V_i + dt*a(i,j)*K(:,j); - end - - K_i = F(t+dt*c(i), V_i); - K_i = K_i + discreteRates(:,i); - - V(:,i) = V_i; - K(:,i) = K_i; - end - - % Compute updated updated solution - v_next = v; - for i = 1:s - v_next = v_next + dt*b(i)*K(:,i); - end - - obj.v = v_next; - obj.t = obj.t + obj.dt; - obj.n = obj.n + 1; - end - - % Returns a vector of time points, including substage points, - % in the time interval [t0, tEnd]. - % The time-step obj.dt is assumed to be aligned with [t0, tEnd] already. - function tvec = timePoints(obj, t0, tEnd) - % TBD: Should this be implemented here or somewhere else? - N = round( (tEnd-t0)/obj.dt ); - tvec = zeros(N*obj.s, 1); - s = obj.coeffs.s; - c = obj.coeffs.c; - for i = 1:N - ind = (i-1)*s+1 : i*s; - tvec(ind) = ((i-1) + c')*obj.dt; - end - end - - % Returns a vector of quadrature weights corresponding to grid points - % in time interval [t0, tEnd], substage points included. - % The time-step obj.dt is assumed to be aligned with [t0, tEnd] already. - function weights = quadWeights(obj, t0, tEnd) - % TBD: Should this be implemented here or somewhere else? - N = round( (tEnd-t0)/obj.dt ); - b = obj.coeffs.b; - weights = repmat(b', N, 1); - end - end - - methods(Static) - % TBD: Function name - function ts = methodFromStr(F, dt, t0, v0, methodStr, discreteData) - default_arg('discreteData', []); - - try - bt = time.rk.ButcherTableau.(method); - catch - error('Runge-Kutta method ''%s'' is not implemented', methodStr) - end - - ts = time.rk.General(F, dt, t0, v0, bt, discreteData); - end - end -end