Mercurial > repos > public > sbplib
view +time/+rk/Explicit.m @ 996:3b903011b1a9 feature/timesteppers
Rename time.rk.General to time.rk.Explicit and fix some errors
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 09 Jan 2019 23:01:17 +0100 |
parents | +time/+rk/General.m@10c5eda235b7 |
children | d4fe089b2c4a |
line wrap: on
line source
classdef Explicit < time.Timestepper properties F % RHS of the ODE dt % Time step t % Time point v % Solution vector n % Time level scheme % The scheme used for the time stepping, e.g rk4, rk6 etc. bt V % All stage approximations in most recent time step K % All stage rates in most recent time step end methods % Timesteps v_t = F(t,v), using the specified ButcherTableau % from t = t0 with timestep dt and initial conditions v(0) = v0 function obj = Explicit(F, dt, t0, v0, bt) assertType(bt, 'time.rk.ButcherTableau') obj.F = F; obj.dt = dt; obj.t = t0; obj.v = v0; obj.n = 0; assert(bt.isExplicit()) obj.bt = bt; end % v: Current solution % t: Current time % V: All stage approximations in most recent time step % K: All stage rates in most recent time step % T: Time points (corresponding to V and K) in most recent time step function [v,t] = getV(obj) v = obj.v; t = obj.t; end function obj = step(obj) s = obj.bt.nStages(); a = obj.bt.a; b = obj.bt.b; c = obj.bt.c; % Compute rates K K = zeros(length(v), s); for i = 1:s V_i = obj.v; for j = 1:i-1 V_i = V_i + dt*a(i,j)*K(:,j); end K(:,i) = F(t+dt*c(i), V_i); end % Compute updated solution v_next = v; for i = 1:s v_next = v_next + dt*b(i)*K(:,i); end obj.v = v_next; obj.t = obj.t + obj.dt; obj.n = obj.n + 1; end % TBD: Method name % TBD: Parameter name % % Takes a regular step but with discreteRates(:,i) added to RHS for stage i. % v_t = F(t,v) + discreteRates(:, ...) % % Also returns the stage approximations (V) and stage rates (K). function [v,t, V, K] = stepWithDiscreteData(obj, discreteRates) s = obj.bt.nStages(); a = obj.bt.a; b = obj.bt.b; c = obj.bt.c; % Compute rates K and stage approximations V K = zeros(length(v), s); V = zeros(length(v), s); for i = 1:s V_i = obj.v; for j = 1:i-1 V_i = V_i + dt*a(i,j)*K(:,j); end K_i = F(t+dt*c(i), V_i); K_i = K_i + discreteRates(:,i); V(:,i) = V_i; K(:,i) = K_i; end % Compute updated updated solution v_next = v; for i = 1:s v_next = v_next + dt*b(i)*K(:,i); end obj.v = v_next; obj.t = obj.t + obj.dt; obj.n = obj.n + 1; end % Returns a vector of time points, including substage points, % in the time interval [t0, tEnd]. % The time-step obj.dt is assumed to be aligned with [t0, tEnd] already. function tvec = timePoints(obj, t0, tEnd) % TBD: Should this be implemented here or somewhere else? N = round( (tEnd-t0)/obj.dt ); tvec = zeros(N*obj.s, 1); s = obj.coeffs.s; c = obj.coeffs.c; for i = 1:N ind = (i-1)*s+1 : i*s; tvec(ind) = ((i-1) + c')*obj.dt; end end % Returns a vector of quadrature weights corresponding to grid points % in time interval [t0, tEnd], substage points included. % The time-step obj.dt is assumed to be aligned with [t0, tEnd] already. function weights = quadWeights(obj, t0, tEnd) % TBD: Should this be implemented here or somewhere else? N = round( (tEnd-t0)/obj.dt ); b = obj.coeffs.b; weights = repmat(b', N, 1); end end methods(Static) % TBD: Function name function ts = methodFromStr(F, dt, t0, v0, methodStr) try bt = time.rk.ButcherTableau.(method); catch error('Runge-Kutta method ''%s'' is not implemented', methodStr) end ts = time.rk.Explicit(F, dt, t0, v0, bt); end end end