Mercurial > repos > public > sbplib
changeset 896:09c5fbc783d3
Rename and mordernize scheme.Wave to scheme.Laplace1d. Not fully converted
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 22 Nov 2018 07:58:11 +0100 |
parents | f30eafd6d4dc |
children | ba7e442ea639 |
files | +scheme/Laplace1D.m +scheme/Wave.m |
diffstat | 2 files changed, 171 insertions(+), 175 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+scheme/Laplace1D.m Thu Nov 22 07:58:11 2018 +0100 @@ -0,0 +1,171 @@ +classdef Laplace1D < scheme.Scheme + properties + g + order % Order accuracy for the approximation + + D % non-stabalized scheme operator + H % Discrete norm + M % Derivative norm + a + + D2 + Hi + e_l + e_r + d_l + d_r + gamm + end + + methods + function obj = Laplace1D(g, order, a) + default_arg('a', 1); + + assertType(g, 'grid.Cartesian'); + + ops = sbp.Ordinary(g.size(), g.h, order); + + obj.D2 = sparse(ops.derivatives.D2); + obj.H = sparse(ops.norms.H); + obj.Hi = sparse(ops.norms.HI); + obj.M = sparse(ops.norms.M); + obj.e_l = sparse(ops.boundary.e_1); + obj.e_r = sparse(ops.boundary.e_m); + obj.d_l = sparse(ops.boundary.S_1); + obj.d_r = sparse(ops.boundary.S_m); + + + obj.g = g; + obj.order = order; + + obj.a = a; + obj.D = a*obj.D2; + + obj.gamm = h*ops.borrowing.M.S; + end + + + % Closure functions return the opertors applied to the own doamin to close the boundary + % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. + % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. + % type is a string specifying the type of boundary condition if there are several. + % data is a function returning the data that should be applied at the boundary. + % neighbour_scheme is an instance of Scheme that should be interfaced to. + % neighbour_boundary is a string specifying which boundary to interface to. + function [closure, penalty] = boundary_condition(obj,boundary,type,data) + default_arg('type','neumann'); + default_arg('data',0); + + [e,d,s] = obj.get_boundary_ops(boundary); + + switch type + % Dirichlet boundary condition + case {'D','dirichlet'} + alpha = obj.alpha; + + % tau1 < -alpha^2/gamma + tuning = 1.1; + tau1 = -tuning*alpha/obj.gamm; + tau2 = s*alpha; + + p = tau1*e + tau2*d; + + closure = obj.Hi*p*e'; + + pp = obj.Hi*p; + switch class(data) + case 'double' + penalty = pp*data; + case 'function_handle' + penalty = @(t)pp*data(t); + otherwise + error('Wierd data argument!') + end + + + % Neumann boundary condition + case {'N','neumann'} + alpha = obj.alpha; + tau1 = -s*alpha; + tau2 = 0; + tau = tau1*e + tau2*d; + + closure = obj.Hi*tau*d'; + + pp = obj.Hi*tau; + switch class(data) + case 'double' + penalty = pp*data; + case 'function_handle' + penalty = @(t)pp*data(t); + otherwise + error('Wierd data argument!') + end + + % Unknown, boundary condition + otherwise + error('No such boundary condition: type = %s',type); + end + end + + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) + % u denotes the solution in the own domain + % v denotes the solution in the neighbour domain + [e_u,d_u,s_u] = obj.get_boundary_ops(boundary); + [e_v,d_v,s_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); + + tuning = 1.1; + + alpha_u = obj.alpha; + alpha_v = neighbour_scheme.alpha; + + gamm_u = obj.gamm; + gamm_v = neighbour_scheme.gamm; + + % tau1 < -(alpha_u/gamm_u + alpha_v/gamm_v) + + tau1 = -(alpha_u/gamm_u + alpha_v/gamm_v) * tuning; + tau2 = s_u*1/2*alpha_u; + sig1 = s_u*(-1/2); + sig2 = 0; + + tau = tau1*e_u + tau2*d_u; + sig = sig1*e_u + sig2*d_u; + + closure = obj.Hi*( tau*e_u' + sig*alpha_u*d_u'); + penalty = obj.Hi*(-tau*e_v' - sig*alpha_v*d_v'); + end + + % Ruturns the boundary ops and sign for the boundary specified by the string boundary. + % The right boundary is considered the positive boundary + function [e,d,s] = get_boundary_ops(obj,boundary) + switch boundary + case 'l' + e = obj.e_l; + d = obj.d_l; + s = -1; + case 'r' + e = obj.e_r; + d = obj.d_r; + s = 1; + otherwise + error('No such boundary: boundary = %s',boundary); + end + end + + function N = size(obj) + N = obj.m; + end + + end + + methods(Static) + % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u + % and bound_v of scheme schm_v. + % [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l') + function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) + [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); + [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); + end + end +end \ No newline at end of file
--- a/+scheme/Wave.m Thu Nov 22 07:29:30 2018 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,175 +0,0 @@ -classdef Wave < scheme.Scheme - properties - m % Number of points in each direction, possibly a vector - h % Grid spacing - x % Grid - order % Order accuracy for the approximation - - D % non-stabalized scheme operator - H % Discrete norm - M % Derivative norm - alpha - - D2 - Hi - e_l - e_r - d1_l - d1_r - gamm - end - - methods - function obj = Wave(m,xlim,order,alpha) - default_arg('a',1); - [x, h] = util.get_grid(xlim{:},m); - - ops = sbp.Ordinary(m,h,order); - - obj.D2 = sparse(ops.derivatives.D2); - obj.H = sparse(ops.norms.H); - obj.Hi = sparse(ops.norms.HI); - obj.M = sparse(ops.norms.M); - obj.e_l = sparse(ops.boundary.e_1); - obj.e_r = sparse(ops.boundary.e_m); - obj.d1_l = sparse(ops.boundary.S_1); - obj.d1_r = sparse(ops.boundary.S_m); - - - obj.m = m; - obj.h = h; - obj.order = order; - - obj.alpha = alpha; - obj.D = alpha*obj.D2; - obj.x = x; - - obj.gamm = h*ops.borrowing.M.S; - - end - - - % Closure functions return the opertors applied to the own doamin to close the boundary - % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. - % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. - % type is a string specifying the type of boundary condition if there are several. - % data is a function returning the data that should be applied at the boundary. - % neighbour_scheme is an instance of Scheme that should be interfaced to. - % neighbour_boundary is a string specifying which boundary to interface to. - function [closure, penalty] = boundary_condition(obj,boundary,type,data) - default_arg('type','neumann'); - default_arg('data',0); - - [e,d,s] = obj.get_boundary_ops(boundary); - - switch type - % Dirichlet boundary condition - case {'D','dirichlet'} - alpha = obj.alpha; - - % tau1 < -alpha^2/gamma - tuning = 1.1; - tau1 = -tuning*alpha/obj.gamm; - tau2 = s*alpha; - - p = tau1*e + tau2*d; - - closure = obj.Hi*p*e'; - - pp = obj.Hi*p; - switch class(data) - case 'double' - penalty = pp*data; - case 'function_handle' - penalty = @(t)pp*data(t); - otherwise - error('Wierd data argument!') - end - - - % Neumann boundary condition - case {'N','neumann'} - alpha = obj.alpha; - tau1 = -s*alpha; - tau2 = 0; - tau = tau1*e + tau2*d; - - closure = obj.Hi*tau*d'; - - pp = obj.Hi*tau; - switch class(data) - case 'double' - penalty = pp*data; - case 'function_handle' - penalty = @(t)pp*data(t); - otherwise - error('Wierd data argument!') - end - - % Unknown, boundary condition - otherwise - error('No such boundary condition: type = %s',type); - end - end - - function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) - % u denotes the solution in the own domain - % v denotes the solution in the neighbour domain - [e_u,d_u,s_u] = obj.get_boundary_ops(boundary); - [e_v,d_v,s_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); - - tuning = 1.1; - - alpha_u = obj.alpha; - alpha_v = neighbour_scheme.alpha; - - gamm_u = obj.gamm; - gamm_v = neighbour_scheme.gamm; - - % tau1 < -(alpha_u/gamm_u + alpha_v/gamm_v) - - tau1 = -(alpha_u/gamm_u + alpha_v/gamm_v) * tuning; - tau2 = s_u*1/2*alpha_u; - sig1 = s_u*(-1/2); - sig2 = 0; - - tau = tau1*e_u + tau2*d_u; - sig = sig1*e_u + sig2*d_u; - - closure = obj.Hi*( tau*e_u' + sig*alpha_u*d_u'); - penalty = obj.Hi*(-tau*e_v' - sig*alpha_v*d_v'); - end - - % Ruturns the boundary ops and sign for the boundary specified by the string boundary. - % The right boundary is considered the positive boundary - function [e,d,s] = get_boundary_ops(obj,boundary) - switch boundary - case 'l' - e = obj.e_l; - d = obj.d1_l; - s = -1; - case 'r' - e = obj.e_r; - d = obj.d1_r; - s = 1; - otherwise - error('No such boundary: boundary = %s',boundary); - end - end - - function N = size(obj) - N = obj.m; - end - - end - - methods(Static) - % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u - % and bound_v of scheme schm_v. - % [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l') - function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) - [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); - [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); - end - end -end \ No newline at end of file