Mercurial > repos > public > sbplib
changeset 687:e8fc3aa1faf6 feature/poroelastic
Rename elastic scheme.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Fri, 09 Feb 2018 13:34:27 -0800 |
parents | 5ccf6aaf6d6b |
children | eb2f9233acc3 |
files | +scheme/Elastic2dVariable.m +scheme/elasticVariable.m |
diffstat | 2 files changed, 420 insertions(+), 420 deletions(-) [+] |
line wrap: on
line diff
diff -r 5ccf6aaf6d6b -r e8fc3aa1faf6 +scheme/Elastic2dVariable.m --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+scheme/Elastic2dVariable.m Fri Feb 09 13:34:27 2018 -0800 @@ -0,0 +1,420 @@ +classdef Elastic2dVariable < scheme.Scheme + +% Discretizes the elastic wave equation: +% rho u_{i,tt} = di lambda dj u_j + dj mu di u_j + dj mu dj u_i +% opSet should be cell array of opSets, one per dimension. This +% is useful if we have periodic BC in one direction. + + properties + m % Number of points in each direction, possibly a vector + h % Grid spacing + + grid + dim + + order % Order of accuracy for the approximation + + % Diagonal matrices for varible coefficients + LAMBDA % Variable coefficient, related to dilation + MU % Shear modulus, variable coefficient + RHO, RHOi % Density, variable + + D % Total operator + D1 % First derivatives + + % Second derivatives + D2_lambda + D2_mu + + % Traction operators used for BC + T_l, T_r + tau_l, tau_r + + H, Hi % Inner products + phi % Borrowing constant for (d1 - e^T*D1) from R + gamma % Borrowing constant for d1 from M + H11 % First element of H + e_l, e_r + d1_l, d1_r % Normal derivatives at the boundary + E % E{i}^T picks out component i + + H_boundary % Boundary inner products + + % Kroneckered norms and coefficients + RHOi_kron + Hi_kron + end + + methods + + function obj = Elastic2dVariable(g ,order, lambda_fun, mu_fun, rho_fun, opSet) + default_arg('opSet',{@sbp.D2Variable, @sbp.D2Variable}); + default_arg('lambda_fun', @(x,y) 0*x+1); + default_arg('mu_fun', @(x,y) 0*x+1); + default_arg('rho_fun', @(x,y) 0*x+1); + dim = 2; + + assert(isa(g, 'grid.Cartesian')) + + lambda = grid.evalOn(g, lambda_fun); + mu = grid.evalOn(g, mu_fun); + rho = grid.evalOn(g, rho_fun); + m = g.size(); + m_tot = g.N(); + + h = g.scaling(); + lim = g.lim; + + % 1D operators + ops = cell(dim,1); + for i = 1:dim + ops{i} = opSet{i}(m(i), lim{i}, order); + end + + % Borrowing constants + for i = 1:dim + beta = ops{i}.borrowing.R.delta_D; + obj.H11{i} = ops{i}.borrowing.H11; + obj.phi{i} = beta/obj.H11{i}; + obj.gamma{i} = ops{i}.borrowing.M.d1; + end + + I = cell(dim,1); + D1 = cell(dim,1); + D2 = cell(dim,1); + H = cell(dim,1); + Hi = cell(dim,1); + e_l = cell(dim,1); + e_r = cell(dim,1); + d1_l = cell(dim,1); + d1_r = cell(dim,1); + + for i = 1:dim + I{i} = speye(m(i)); + D1{i} = ops{i}.D1; + D2{i} = ops{i}.D2; + H{i} = ops{i}.H; + Hi{i} = ops{i}.HI; + e_l{i} = ops{i}.e_l; + e_r{i} = ops{i}.e_r; + d1_l{i} = ops{i}.d1_l; + d1_r{i} = ops{i}.d1_r; + end + + %====== Assemble full operators ======== + LAMBDA = spdiag(lambda); + obj.LAMBDA = LAMBDA; + MU = spdiag(mu); + obj.MU = MU; + RHO = spdiag(rho); + obj.RHO = RHO; + obj.RHOi = inv(RHO); + + obj.D1 = cell(dim,1); + obj.D2_lambda = cell(dim,1); + obj.D2_mu = cell(dim,1); + obj.e_l = cell(dim,1); + obj.e_r = cell(dim,1); + obj.d1_l = cell(dim,1); + obj.d1_r = cell(dim,1); + + % D1 + obj.D1{1} = kron(D1{1},I{2}); + obj.D1{2} = kron(I{1},D1{2}); + + % Boundary operators + obj.e_l{1} = kron(e_l{1},I{2}); + obj.e_l{2} = kron(I{1},e_l{2}); + obj.e_r{1} = kron(e_r{1},I{2}); + obj.e_r{2} = kron(I{1},e_r{2}); + + obj.d1_l{1} = kron(d1_l{1},I{2}); + obj.d1_l{2} = kron(I{1},d1_l{2}); + obj.d1_r{1} = kron(d1_r{1},I{2}); + obj.d1_r{2} = kron(I{1},d1_r{2}); + + % D2 + for i = 1:dim + obj.D2_lambda{i} = sparse(m_tot); + obj.D2_mu{i} = sparse(m_tot); + end + ind = grid.funcToMatrix(g, 1:m_tot); + + for i = 1:m(2) + D_lambda = D2{1}(lambda(ind(:,i))); + D_mu = D2{1}(mu(ind(:,i))); + + p = ind(:,i); + obj.D2_lambda{1}(p,p) = D_lambda; + obj.D2_mu{1}(p,p) = D_mu; + end + + for i = 1:m(1) + D_lambda = D2{2}(lambda(ind(i,:))); + D_mu = D2{2}(mu(ind(i,:))); + + p = ind(i,:); + obj.D2_lambda{2}(p,p) = D_lambda; + obj.D2_mu{2}(p,p) = D_mu; + end + + % Quadratures + obj.H = kron(H{1},H{2}); + obj.Hi = inv(obj.H); + obj.H_boundary = cell(dim,1); + obj.H_boundary{1} = H{2}; + obj.H_boundary{2} = H{1}; + + % E{i}^T picks out component i. + E = cell(dim,1); + I = speye(m_tot,m_tot); + for i = 1:dim + e = sparse(dim,1); + e(i) = 1; + E{i} = kron(I,e); + end + obj.E = E; + + % Differentiation matrix D (without SAT) + D2_lambda = obj.D2_lambda; + D2_mu = obj.D2_mu; + D1 = obj.D1; + D = sparse(dim*m_tot,dim*m_tot); + d = @kroneckerDelta; % Kronecker delta + db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta + for i = 1:dim + for j = 1:dim + D = D + E{i}*inv(RHO)*( d(i,j)*D2_lambda{i}*E{j}' +... + db(i,j)*D1{i}*LAMBDA*D1{j}*E{j}' ... + ); + D = D + E{i}*inv(RHO)*( d(i,j)*D2_mu{i}*E{j}' +... + db(i,j)*D1{j}*MU*D1{i}*E{j}' + ... + D2_mu{j}*E{i}' ... + ); + end + end + obj.D = D; + %=========================================% + + % Numerical traction operators for BC. + % Because d1 =/= e0^T*D1, the numerical tractions are different + % at every boundary. + T_l = cell(dim,1); + T_r = cell(dim,1); + tau_l = cell(dim,1); + tau_r = cell(dim,1); + % tau^{j}_i = sum_k T^{j}_{ik} u_k + + d1_l = obj.d1_l; + d1_r = obj.d1_r; + e_l = obj.e_l; + e_r = obj.e_r; + D1 = obj.D1; + + % Loop over boundaries + for j = 1:dim + T_l{j} = cell(dim,dim); + T_r{j} = cell(dim,dim); + tau_l{j} = cell(dim,1); + tau_r{j} = cell(dim,1); + + % Loop over components + for i = 1:dim + tau_l{j}{i} = sparse(m_tot,dim*m_tot); + tau_r{j}{i} = sparse(m_tot,dim*m_tot); + for k = 1:dim + T_l{j}{i,k} = ... + -d(i,j)*LAMBDA*(d(i,k)*e_l{k}*d1_l{k}' + db(i,k)*D1{k})... + -d(j,k)*MU*(d(i,j)*e_l{i}*d1_l{i}' + db(i,j)*D1{i})... + -d(i,k)*MU*e_l{j}*d1_l{j}'; + + T_r{j}{i,k} = ... + d(i,j)*LAMBDA*(d(i,k)*e_r{k}*d1_r{k}' + db(i,k)*D1{k})... + +d(j,k)*MU*(d(i,j)*e_r{i}*d1_r{i}' + db(i,j)*D1{i})... + +d(i,k)*MU*e_r{j}*d1_r{j}'; + + tau_l{j}{i} = tau_l{j}{i} + T_l{j}{i,k}*E{k}'; + tau_r{j}{i} = tau_r{j}{i} + T_r{j}{i,k}*E{k}'; + end + + end + end + obj.T_l = T_l; + obj.T_r = T_r; + obj.tau_l = tau_l; + obj.tau_r = tau_r; + + % Kroneckered norms and coefficients + I_dim = speye(dim); + obj.RHOi_kron = kron(obj.RHOi, I_dim); + obj.Hi_kron = kron(obj.Hi, I_dim); + + % Misc. + obj.m = m; + obj.h = h; + obj.order = order; + obj.grid = g; + obj.dim = dim; + + end + + + % Closure functions return the operators applied to the own domain to close the boundary + % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin. + % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. + % type is a cell array of strings specifying the type of boundary condition for each component. + % data is a function returning the data that should be applied at the boundary. + % neighbour_scheme is an instance of Scheme that should be interfaced to. + % neighbour_boundary is a string specifying which boundary to interface to. + function [closure, penalty] = boundary_condition(obj, boundary, type, parameter) + default_arg('type',{'free','free'}); + default_arg('parameter', []); + + % j is the coordinate direction of the boundary + % nj: outward unit normal component. + % nj = -1 for west, south, bottom boundaries + % nj = 1 for east, north, top boundaries + [j, nj] = obj.get_boundary_number(boundary); + switch nj + case 1 + e = obj.e_r; + d = obj.d1_r; + tau = obj.tau_r{j}; + T = obj.T_r{j}; + case -1 + e = obj.e_l; + d = obj.d1_l; + tau = obj.tau_l{j}; + T = obj.T_l{j}; + end + + E = obj.E; + Hi = obj.Hi; + H_gamma = obj.H_boundary{j}; + LAMBDA = obj.LAMBDA; + MU = obj.MU; + RHOi = obj.RHOi; + + dim = obj.dim; + m_tot = obj.grid.N(); + + RHOi_kron = obj.RHOi_kron; + Hi_kron = obj.Hi_kron; + + % Preallocate + closure = sparse(dim*m_tot, dim*m_tot); + penalty = cell(dim,1); + for k = 1:dim + penalty{k} = sparse(dim*m_tot, m_tot/obj.m(j)); + end + + % Loop over components that we (potentially) have different BC on + for k = 1:dim + switch type{k} + + % Dirichlet boundary condition + case {'D','d','dirichlet','Dirichlet'} + + tuning = 1.2; + phi = obj.phi{j}; + h = obj.h(j); + h11 = obj.H11{j}*h; + gamma = obj.gamma{j}; + + a_lambda = dim/h11 + 1/(h11*phi); + a_mu_i = 2/(gamma*h); + a_mu_ij = 2/h11 + 1/(h11*phi); + + d = @kroneckerDelta; % Kronecker delta + db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta + alpha = @(i,j) tuning*( d(i,j)* a_lambda*LAMBDA ... + + d(i,j)* a_mu_i*MU ... + + db(i,j)*a_mu_ij*MU ); + + % Loop over components that Dirichlet penalties end up on + for i = 1:dim + C = T{k,i}; + A = -d(i,k)*alpha(i,j); + B = A + C; + closure = closure + E{i}*RHOi*Hi*B'*e{j}*H_gamma*(e{j}'*E{k}' ); + penalty{k} = penalty{k} - E{i}*RHOi*Hi*B'*e{j}*H_gamma; + end + + % Free boundary condition + case {'F','f','Free','free','traction','Traction','t','T'} + closure = closure - E{k}*RHOi*Hi*e{j}*H_gamma* (e{j}'*tau{k} ); + penalty{k} = penalty{k} + E{k}*RHOi*Hi*e{j}*H_gamma; + + % Unknown boundary condition + otherwise + error('No such boundary condition: type = %s',type); + end + end + end + + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) + % u denotes the solution in the own domain + % v denotes the solution in the neighbour domain + tuning = 1.2; + % tuning = 20.2; + error('Interface not implemented'); + end + + % Returns the coordinate number and outward normal component for the boundary specified by the string boundary. + function [j, nj] = get_boundary_number(obj, boundary) + + switch boundary + case {'w','W','west','West', 'e', 'E', 'east', 'East'} + j = 1; + case {'s','S','south','South', 'n', 'N', 'north', 'North'} + j = 2; + otherwise + error('No such boundary: boundary = %s',boundary); + end + + switch boundary + case {'w','W','west','West','s','S','south','South'} + nj = -1; + case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} + nj = 1; + end + end + + % Returns the coordinate number and outward normal component for the boundary specified by the string boundary. + function [return_op] = get_boundary_operator(obj, op, boundary) + + switch boundary + case {'w','W','west','West', 'e', 'E', 'east', 'East'} + j = 1; + case {'s','S','south','South', 'n', 'N', 'north', 'North'} + j = 2; + otherwise + error('No such boundary: boundary = %s',boundary); + end + + switch op + case 'e' + switch boundary + case {'w','W','west','West','s','S','south','South'} + return_op = obj.e_l{j}; + case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} + return_op = obj.e_r{j}; + end + case 'd' + switch boundary + case {'w','W','west','West','s','S','south','South'} + return_op = obj.d_l{j}; + case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} + return_op = obj.d_r{j}; + end + otherwise + error(['No such operator: operatr = ' op]); + end + + end + + function N = size(obj) + N = prod(obj.m); + end + end +end
diff -r 5ccf6aaf6d6b -r e8fc3aa1faf6 +scheme/elasticVariable.m --- a/+scheme/elasticVariable.m Thu Feb 08 16:44:46 2018 -0800 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,420 +0,0 @@ -classdef elasticVariable < scheme.Scheme - -% Discretizes the elastic wave equation: -% rho u_{i,tt} = di lambda dj u_j + dj mu di u_j + dj mu dj u_i -% opSet should be cell array of opSets, one per dimension. This -% is useful if we have periodic BC in one direction. - - properties - m % Number of points in each direction, possibly a vector - h % Grid spacing - - grid - dim - - order % Order of accuracy for the approximation - - % Diagonal matrices for varible coefficients - LAMBDA % Variable coefficient, related to dilation - MU % Shear modulus, variable coefficient - RHO, RHOi % Density, variable - - D % Total operator - D1 % First derivatives - - % Second derivatives - D2_lambda - D2_mu - - % Traction operators used for BC - T_l, T_r - tau_l, tau_r - - H, Hi % Inner products - phi % Borrowing constant for (d1 - e^T*D1) from R - gamma % Borrowing constant for d1 from M - H11 % First element of H - e_l, e_r - d1_l, d1_r % Normal derivatives at the boundary - E % E{i}^T picks out component i - - H_boundary % Boundary inner products - - % Kroneckered norms and coefficients - RHOi_kron - Hi_kron - end - - methods - - function obj = elasticVariable(g ,order, lambda_fun, mu_fun, rho_fun, opSet) - default_arg('opSet',{@sbp.D2Variable, @sbp.D2Variable}); - default_arg('lambda_fun', @(x,y) 0*x+1); - default_arg('mu_fun', @(x,y) 0*x+1); - default_arg('rho_fun', @(x,y) 0*x+1); - dim = 2; - - assert(isa(g, 'grid.Cartesian')) - - lambda = grid.evalOn(g, lambda_fun); - mu = grid.evalOn(g, mu_fun); - rho = grid.evalOn(g, rho_fun); - m = g.size(); - m_tot = g.N(); - - h = g.scaling(); - lim = g.lim; - - % 1D operators - ops = cell(dim,1); - for i = 1:dim - ops{i} = opSet{i}(m(i), lim{i}, order); - end - - % Borrowing constants - for i = 1:dim - beta = ops{i}.borrowing.R.delta_D; - obj.H11{i} = ops{i}.borrowing.H11; - obj.phi{i} = beta/obj.H11{i}; - obj.gamma{i} = ops{i}.borrowing.M.d1; - end - - I = cell(dim,1); - D1 = cell(dim,1); - D2 = cell(dim,1); - H = cell(dim,1); - Hi = cell(dim,1); - e_l = cell(dim,1); - e_r = cell(dim,1); - d1_l = cell(dim,1); - d1_r = cell(dim,1); - - for i = 1:dim - I{i} = speye(m(i)); - D1{i} = ops{i}.D1; - D2{i} = ops{i}.D2; - H{i} = ops{i}.H; - Hi{i} = ops{i}.HI; - e_l{i} = ops{i}.e_l; - e_r{i} = ops{i}.e_r; - d1_l{i} = ops{i}.d1_l; - d1_r{i} = ops{i}.d1_r; - end - - %====== Assemble full operators ======== - LAMBDA = spdiag(lambda); - obj.LAMBDA = LAMBDA; - MU = spdiag(mu); - obj.MU = MU; - RHO = spdiag(rho); - obj.RHO = RHO; - obj.RHOi = inv(RHO); - - obj.D1 = cell(dim,1); - obj.D2_lambda = cell(dim,1); - obj.D2_mu = cell(dim,1); - obj.e_l = cell(dim,1); - obj.e_r = cell(dim,1); - obj.d1_l = cell(dim,1); - obj.d1_r = cell(dim,1); - - % D1 - obj.D1{1} = kron(D1{1},I{2}); - obj.D1{2} = kron(I{1},D1{2}); - - % Boundary operators - obj.e_l{1} = kron(e_l{1},I{2}); - obj.e_l{2} = kron(I{1},e_l{2}); - obj.e_r{1} = kron(e_r{1},I{2}); - obj.e_r{2} = kron(I{1},e_r{2}); - - obj.d1_l{1} = kron(d1_l{1},I{2}); - obj.d1_l{2} = kron(I{1},d1_l{2}); - obj.d1_r{1} = kron(d1_r{1},I{2}); - obj.d1_r{2} = kron(I{1},d1_r{2}); - - % D2 - for i = 1:dim - obj.D2_lambda{i} = sparse(m_tot); - obj.D2_mu{i} = sparse(m_tot); - end - ind = grid.funcToMatrix(g, 1:m_tot); - - for i = 1:m(2) - D_lambda = D2{1}(lambda(ind(:,i))); - D_mu = D2{1}(mu(ind(:,i))); - - p = ind(:,i); - obj.D2_lambda{1}(p,p) = D_lambda; - obj.D2_mu{1}(p,p) = D_mu; - end - - for i = 1:m(1) - D_lambda = D2{2}(lambda(ind(i,:))); - D_mu = D2{2}(mu(ind(i,:))); - - p = ind(i,:); - obj.D2_lambda{2}(p,p) = D_lambda; - obj.D2_mu{2}(p,p) = D_mu; - end - - % Quadratures - obj.H = kron(H{1},H{2}); - obj.Hi = inv(obj.H); - obj.H_boundary = cell(dim,1); - obj.H_boundary{1} = H{2}; - obj.H_boundary{2} = H{1}; - - % E{i}^T picks out component i. - E = cell(dim,1); - I = speye(m_tot,m_tot); - for i = 1:dim - e = sparse(dim,1); - e(i) = 1; - E{i} = kron(I,e); - end - obj.E = E; - - % Differentiation matrix D (without SAT) - D2_lambda = obj.D2_lambda; - D2_mu = obj.D2_mu; - D1 = obj.D1; - D = sparse(dim*m_tot,dim*m_tot); - d = @kroneckerDelta; % Kronecker delta - db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta - for i = 1:dim - for j = 1:dim - D = D + E{i}*inv(RHO)*( d(i,j)*D2_lambda{i}*E{j}' +... - db(i,j)*D1{i}*LAMBDA*D1{j}*E{j}' ... - ); - D = D + E{i}*inv(RHO)*( d(i,j)*D2_mu{i}*E{j}' +... - db(i,j)*D1{j}*MU*D1{i}*E{j}' + ... - D2_mu{j}*E{i}' ... - ); - end - end - obj.D = D; - %=========================================% - - % Numerical traction operators for BC. - % Because d1 =/= e0^T*D1, the numerical tractions are different - % at every boundary. - T_l = cell(dim,1); - T_r = cell(dim,1); - tau_l = cell(dim,1); - tau_r = cell(dim,1); - % tau^{j}_i = sum_k T^{j}_{ik} u_k - - d1_l = obj.d1_l; - d1_r = obj.d1_r; - e_l = obj.e_l; - e_r = obj.e_r; - D1 = obj.D1; - - % Loop over boundaries - for j = 1:dim - T_l{j} = cell(dim,dim); - T_r{j} = cell(dim,dim); - tau_l{j} = cell(dim,1); - tau_r{j} = cell(dim,1); - - % Loop over components - for i = 1:dim - tau_l{j}{i} = sparse(m_tot,dim*m_tot); - tau_r{j}{i} = sparse(m_tot,dim*m_tot); - for k = 1:dim - T_l{j}{i,k} = ... - -d(i,j)*LAMBDA*(d(i,k)*e_l{k}*d1_l{k}' + db(i,k)*D1{k})... - -d(j,k)*MU*(d(i,j)*e_l{i}*d1_l{i}' + db(i,j)*D1{i})... - -d(i,k)*MU*e_l{j}*d1_l{j}'; - - T_r{j}{i,k} = ... - d(i,j)*LAMBDA*(d(i,k)*e_r{k}*d1_r{k}' + db(i,k)*D1{k})... - +d(j,k)*MU*(d(i,j)*e_r{i}*d1_r{i}' + db(i,j)*D1{i})... - +d(i,k)*MU*e_r{j}*d1_r{j}'; - - tau_l{j}{i} = tau_l{j}{i} + T_l{j}{i,k}*E{k}'; - tau_r{j}{i} = tau_r{j}{i} + T_r{j}{i,k}*E{k}'; - end - - end - end - obj.T_l = T_l; - obj.T_r = T_r; - obj.tau_l = tau_l; - obj.tau_r = tau_r; - - % Kroneckered norms and coefficients - I_dim = speye(dim); - obj.RHOi_kron = kron(obj.RHOi, I_dim); - obj.Hi_kron = kron(obj.Hi, I_dim); - - % Misc. - obj.m = m; - obj.h = h; - obj.order = order; - obj.grid = g; - obj.dim = dim; - - end - - - % Closure functions return the operators applied to the own domain to close the boundary - % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin. - % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. - % type is a cell array of strings specifying the type of boundary condition for each component. - % data is a function returning the data that should be applied at the boundary. - % neighbour_scheme is an instance of Scheme that should be interfaced to. - % neighbour_boundary is a string specifying which boundary to interface to. - function [closure, penalty] = boundary_condition(obj, boundary, type, parameter) - default_arg('type',{'free','free'}); - default_arg('parameter', []); - - % j is the coordinate direction of the boundary - % nj: outward unit normal component. - % nj = -1 for west, south, bottom boundaries - % nj = 1 for east, north, top boundaries - [j, nj] = obj.get_boundary_number(boundary); - switch nj - case 1 - e = obj.e_r; - d = obj.d1_r; - tau = obj.tau_r{j}; - T = obj.T_r{j}; - case -1 - e = obj.e_l; - d = obj.d1_l; - tau = obj.tau_l{j}; - T = obj.T_l{j}; - end - - E = obj.E; - Hi = obj.Hi; - H_gamma = obj.H_boundary{j}; - LAMBDA = obj.LAMBDA; - MU = obj.MU; - RHOi = obj.RHOi; - - dim = obj.dim; - m_tot = obj.grid.N(); - - RHOi_kron = obj.RHOi_kron; - Hi_kron = obj.Hi_kron; - - % Preallocate - closure = sparse(dim*m_tot, dim*m_tot); - penalty = cell(dim,1); - for k = 1:dim - penalty{k} = sparse(dim*m_tot, m_tot/obj.m(j)); - end - - % Loop over components that we (potentially) have different BC on - for k = 1:dim - switch type{k} - - % Dirichlet boundary condition - case {'D','d','dirichlet','Dirichlet'} - - tuning = 1.2; - phi = obj.phi{j}; - h = obj.h(j); - h11 = obj.H11{j}*h; - gamma = obj.gamma{j}; - - a_lambda = dim/h11 + 1/(h11*phi); - a_mu_i = 2/(gamma*h); - a_mu_ij = 2/h11 + 1/(h11*phi); - - d = @kroneckerDelta; % Kronecker delta - db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta - alpha = @(i,j) tuning*( d(i,j)* a_lambda*LAMBDA ... - + d(i,j)* a_mu_i*MU ... - + db(i,j)*a_mu_ij*MU ); - - % Loop over components that Dirichlet penalties end up on - for i = 1:dim - C = T{k,i}; - A = -d(i,k)*alpha(i,j); - B = A + C; - closure = closure + E{i}*RHOi*Hi*B'*e{j}*H_gamma*(e{j}'*E{k}' ); - penalty{k} = penalty{k} - E{i}*RHOi*Hi*B'*e{j}*H_gamma; - end - - % Free boundary condition - case {'F','f','Free','free','traction','Traction','t','T'} - closure = closure - E{k}*RHOi*Hi*e{j}*H_gamma* (e{j}'*tau{k} ); - penalty{k} = penalty{k} + E{k}*RHOi*Hi*e{j}*H_gamma; - - % Unknown boundary condition - otherwise - error('No such boundary condition: type = %s',type); - end - end - end - - function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) - % u denotes the solution in the own domain - % v denotes the solution in the neighbour domain - tuning = 1.2; - % tuning = 20.2; - error('Interface not implemented'); - end - - % Returns the coordinate number and outward normal component for the boundary specified by the string boundary. - function [j, nj] = get_boundary_number(obj, boundary) - - switch boundary - case {'w','W','west','West', 'e', 'E', 'east', 'East'} - j = 1; - case {'s','S','south','South', 'n', 'N', 'north', 'North'} - j = 2; - otherwise - error('No such boundary: boundary = %s',boundary); - end - - switch boundary - case {'w','W','west','West','s','S','south','South'} - nj = -1; - case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} - nj = 1; - end - end - - % Returns the coordinate number and outward normal component for the boundary specified by the string boundary. - function [return_op] = get_boundary_operator(obj, op, boundary) - - switch boundary - case {'w','W','west','West', 'e', 'E', 'east', 'East'} - j = 1; - case {'s','S','south','South', 'n', 'N', 'north', 'North'} - j = 2; - otherwise - error('No such boundary: boundary = %s',boundary); - end - - switch op - case 'e' - switch boundary - case {'w','W','west','West','s','S','south','South'} - return_op = obj.e_l{j}; - case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} - return_op = obj.e_r{j}; - end - case 'd' - switch boundary - case {'w','W','west','West','s','S','south','South'} - return_op = obj.d_l{j}; - case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} - return_op = obj.d_r{j}; - end - otherwise - error(['No such operator: operatr = ' op]); - end - - end - - function N = size(obj) - N = prod(obj.m); - end - end -end