Mercurial > repos > public > sbplib
changeset 1002:a9dc62fe95c6
Remove scheme.Beam2d.m
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 16 Jan 2019 16:37:59 +0100 |
parents | a72038b1f709 |
children | 28754800d900 efa51f393fd0 |
files | +scheme/Beam2d.m |
diffstat | 1 files changed, 0 insertions(+), 245 deletions(-) [+] |
line wrap: on
line diff
diff -r a72038b1f709 -r a9dc62fe95c6 +scheme/Beam2d.m --- a/+scheme/Beam2d.m Tue Jan 08 15:00:12 2019 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,245 +0,0 @@ -classdef Beam2d < scheme.Scheme - properties - grid - order % Order accuracy for the approximation - - D % non-stabalized scheme operator - M % Derivative norm - alpha - - H % Discrete norm - Hi - H_x, H_y % Norms in the x and y directions - Hx,Hy % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. - Hi_x, Hi_y - Hix, Hiy - e_w, e_e, e_s, e_n - d1_w, d1_e, d1_s, d1_n - d2_w, d2_e, d2_s, d2_n - d3_w, d3_e, d3_s, d3_n - gamm_x, gamm_y - delt_x, delt_y - end - - methods - function obj = Beam2d(m,lim,order,alpha,opsGen) - default_arg('alpha',1); - default_arg('opsGen',@sbp.Higher); - - if ~isa(grid, 'grid.Cartesian') || grid.D() ~= 2 - error('Grid must be 2d cartesian'); - end - - obj.grid = grid; - obj.alpha = alpha; - obj.order = order; - - m_x = grid.m(1); - m_y = grid.m(2); - - h = grid.scaling(); - h_x = h(1); - h_y = h(2); - - ops_x = opsGen(m_x,h_x,order); - ops_y = opsGen(m_y,h_y,order); - - I_x = speye(m_x); - I_y = speye(m_y); - - D4_x = sparse(ops_x.derivatives.D4); - H_x = sparse(ops_x.norms.H); - Hi_x = sparse(ops_x.norms.HI); - e_l_x = sparse(ops_x.boundary.e_1); - e_r_x = sparse(ops_x.boundary.e_m); - d1_l_x = sparse(ops_x.boundary.S_1); - d1_r_x = sparse(ops_x.boundary.S_m); - d2_l_x = sparse(ops_x.boundary.S2_1); - d2_r_x = sparse(ops_x.boundary.S2_m); - d3_l_x = sparse(ops_x.boundary.S3_1); - d3_r_x = sparse(ops_x.boundary.S3_m); - - D4_y = sparse(ops_y.derivatives.D4); - H_y = sparse(ops_y.norms.H); - Hi_y = sparse(ops_y.norms.HI); - e_l_y = sparse(ops_y.boundary.e_1); - e_r_y = sparse(ops_y.boundary.e_m); - d1_l_y = sparse(ops_y.boundary.S_1); - d1_r_y = sparse(ops_y.boundary.S_m); - d2_l_y = sparse(ops_y.boundary.S2_1); - d2_r_y = sparse(ops_y.boundary.S2_m); - d3_l_y = sparse(ops_y.boundary.S3_1); - d3_r_y = sparse(ops_y.boundary.S3_m); - - - D4 = kr(D4_x, I_y) + kr(I_x, D4_y); - - % Norms - obj.H = kr(H_x,H_y); - obj.Hx = kr(H_x,I_x); - obj.Hy = kr(I_x,H_y); - obj.Hix = kr(Hi_x,I_y); - obj.Hiy = kr(I_x,Hi_y); - obj.Hi = kr(Hi_x,Hi_y); - - % Boundary operators - obj.e_w = kr(e_l_x,I_y); - obj.e_e = kr(e_r_x,I_y); - obj.e_s = kr(I_x,e_l_y); - obj.e_n = kr(I_x,e_r_y); - obj.d1_w = kr(d1_l_x,I_y); - obj.d1_e = kr(d1_r_x,I_y); - obj.d1_s = kr(I_x,d1_l_y); - obj.d1_n = kr(I_x,d1_r_y); - obj.d2_w = kr(d2_l_x,I_y); - obj.d2_e = kr(d2_r_x,I_y); - obj.d2_s = kr(I_x,d2_l_y); - obj.d2_n = kr(I_x,d2_r_y); - obj.d3_w = kr(d3_l_x,I_y); - obj.d3_e = kr(d3_r_x,I_y); - obj.d3_s = kr(I_x,d3_l_y); - obj.d3_n = kr(I_x,d3_r_y); - - obj.D = alpha*D4; - - obj.gamm_x = h_x*ops_x.borrowing.N.S2/2; - obj.delt_x = h_x^3*ops_x.borrowing.N.S3/2; - - obj.gamm_y = h_y*ops_y.borrowing.N.S2/2; - obj.delt_y = h_y^3*ops_y.borrowing.N.S3/2; - end - - - % Closure functions return the opertors applied to the own doamin to close the boundary - % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. - % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. - % type is a string specifying the type of boundary condition if there are several. - % data is a function returning the data that should be applied at the boundary. - % neighbour_scheme is an instance of Scheme that should be interfaced to. - % neighbour_boundary is a string specifying which boundary to interface to. - function [closure, penalty_e,penalty_d] = boundary_condition(obj,boundary,type,data) - default_arg('type','dn'); - default_arg('data',0); - - [e,d1,d2,d3,s,gamm,delt,halfnorm_inv] = obj.get_boundary_ops(boundary); - - switch type - % Dirichlet-neumann boundary condition - case {'dn'} - alpha = obj.alpha; - - % tau1 < -alpha^2/gamma - tuning = 1.1; - - tau1 = tuning * alpha/delt; - tau4 = s*alpha; - - sig2 = tuning * alpha/gamm; - sig3 = -s*alpha; - - tau = tau1*e+tau4*d3; - sig = sig2*d1+sig3*d2; - - closure = halfnorm_inv*(tau*e' + sig*d1'); - - pp_e = halfnorm_inv*tau; - pp_d = halfnorm_inv*sig; - switch class(data) - case 'double' - penalty_e = pp_e*data; - penalty_d = pp_d*data; - case 'function_handle' - penalty_e = @(t)pp_e*data(t); - penalty_d = @(t)pp_d*data(t); - otherwise - error('Wierd data argument!') - end - - % Unknown, boundary condition - otherwise - error('No such boundary condition: type = %s',type); - end - end - - function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary, type) - % u denotes the solution in the own domain - % v denotes the solution in the neighbour domain - [e_u,d1_u,d2_u,d3_u,s_u,gamm_u,delt_u, halfnorm_inv] = obj.get_boundary_ops(boundary); - [e_v,d1_v,d2_v,d3_v,s_v,gamm_v,delt_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); - - tuning = 2; - - alpha_u = obj.alpha; - alpha_v = neighbour_scheme.alpha; - - tau1 = ((alpha_u/2)/delt_u + (alpha_v/2)/delt_v)/2*tuning; - % tau1 = (alpha_u/2 + alpha_v/2)/(2*delt_u)*tuning; - tau4 = s_u*alpha_u/2; - - sig2 = ((alpha_u/2)/gamm_u + (alpha_v/2)/gamm_v)/2*tuning; - sig3 = -s_u*alpha_u/2; - - phi2 = s_u*1/2; - - psi1 = -s_u*1/2; - - tau = tau1*e_u + tau4*d3_u; - sig = sig2*d1_u + sig3*d2_u ; - phi = phi2*d1_u ; - psi = psi1*e_u ; - - closure = halfnorm_inv*(tau*e_u' + sig*d1_u' + phi*alpha_u*d2_u' + psi*alpha_u*d3_u'); - penalty = -halfnorm_inv*(tau*e_v' + sig*d1_v' + phi*alpha_v*d2_v' + psi*alpha_v*d3_v'); - end - - % Ruturns the boundary ops and sign for the boundary specified by the string boundary. - % The right boundary is considered the positive boundary - function [e,d1,d2,d3,s,gamm, delt, halfnorm_inv] = get_boundary_ops(obj,boundary) - switch boundary - case 'w' - e = obj.e_w; - d1 = obj.d1_w; - d2 = obj.d2_w; - d3 = obj.d3_w; - s = -1; - gamm = obj.gamm_x; - delt = obj.delt_x; - halfnorm_inv = obj.Hix; - case 'e' - e = obj.e_e; - d1 = obj.d1_e; - d2 = obj.d2_e; - d3 = obj.d3_e; - s = 1; - gamm = obj.gamm_x; - delt = obj.delt_x; - halfnorm_inv = obj.Hix; - case 's' - e = obj.e_s; - d1 = obj.d1_s; - d2 = obj.d2_s; - d3 = obj.d3_s; - s = -1; - gamm = obj.gamm_y; - delt = obj.delt_y; - halfnorm_inv = obj.Hiy; - case 'n' - e = obj.e_n; - d1 = obj.d1_n; - d2 = obj.d2_n; - d3 = obj.d3_n; - s = 1; - gamm = obj.gamm_y; - delt = obj.delt_y; - halfnorm_inv = obj.Hiy; - otherwise - error('No such boundary: boundary = %s',boundary); - end - end - - function N = size(obj) - N = prod(obj.m); - end - - end -end