changeset 296:a6ae1b104391 feature/hypsyst

Renamed class.
author Jonatan Werpers <jonatan@werpers.com>
date Mon, 26 Sep 2016 14:21:37 +0200
parents da0131655035
children cd30b22cee56
files +scheme/Hypsyst2d.m +scheme/hypsyst2d.m
diffstat 2 files changed, 279 insertions(+), 279 deletions(-) [+]
line wrap: on
line diff
diff -r da0131655035 -r a6ae1b104391 +scheme/Hypsyst2d.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/Hypsyst2d.m	Mon Sep 26 14:21:37 2016 +0200
@@ -0,0 +1,279 @@
+classdef Hypsyst2d < scheme.Scheme
+    properties
+        m % Number of points in each direction, possibly a vector
+        n %size of system
+        h % Grid spacing
+        x,y % Grid
+        X,Y % Values of x and y for each grid point
+        order % Order accuracy for the approximation
+
+        D % non-stabalized scheme operator
+        A, B, E
+
+        H % Discrete norm
+        % Norms in the x and y directions
+        Hxi,Hyi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir.
+        I_x,I_y, I_N
+        e_w, e_e, e_s, e_n
+        params %parameters for the coeficient matrices
+        matrices
+    end
+
+
+    methods
+        function obj = Hypsyst2d(m, lim, order, A, B, E, params)
+            default_arg('E', [])
+            xlim = lim{1};
+            ylim = lim{2};
+
+            if length(m) == 1
+                m = [m m];
+            end
+
+            m_x = m(1);
+            m_y = m(2);
+            obj.params = params;
+
+            obj.matrices = matrices;
+
+            ops_x = sbp.D2Standard(m_x,xlim,order);
+            ops_y = sbp.D2Standard(m_y,ylim,order);
+
+            obj.x = ops_x.x;
+            obj.y = ops_y.x;
+
+            obj.X = kr(obj.x,ones(m_y,1));
+            obj.Y = kr(ones(m_x,1),obj.y);
+
+            obj.A = obj.evaluateCoefficientMatrix(matrices.A, obj.X, obj.Y);
+            obj.B = obj.evaluateCoefficientMatrix(matrices.B, obj.X, obj.Y);
+            obj.E = obj.evaluateCoefficientMatrix(matrices.E, obj.X, obj.Y);
+
+            obj.n = length(matrices.A(obj.params,0,0));
+
+            I_n = eye(obj.n);I_x = speye(m_x);
+            obj.I_x = I_x;
+            I_y = speye(m_y);
+            obj.I_y = I_y;
+
+
+            D1_x = kr(I_n, ops_x.D1, I_y);
+            obj.Hxi = kr(I_n, ops_x.HI, I_y);
+            D1_y = kr(I_n, I_x, ops_y.D1));
+            obj.Hyi = kr(I_n, I_x, ops_y.HI));
+
+            obj.e_w = kr(I_n, ops_x.e_l, I_y);
+            obj.e_e = kr(I_n, ops_x.e_r, I_y);
+            obj.e_s = kr(I_n, I_x, ops_y.e_l);
+            obj.e_n = kr(I_n, I_x, ops_y.e_r);
+
+            obj.m=m;
+            obj.h=[ops_x.h ops_y.h];
+            obj.order=order;
+
+            obj.D=-obj.A*D1_x-obj.B*D1_y-obj.E;
+
+        end
+
+        % Closure functions return the opertors applied to the own doamin to close the boundary
+        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       type                is a string specifying the type of boundary condition if there are several.
+        %       data                is a function returning the data that should be applied at the boundary.
+        function [closure, penalty] = boundary_condition(obj,boundary,type,L)
+            default_arg('type','char');
+            switch type
+                case{'c','char'}
+                    [closure,penalty]=boundary_condition_char(obj,boundary);
+                case{'general'}
+                    [closure,penalty]=boundary_condition_general(obj,boundary,L);
+                otherwise
+                    error('No such boundary condition')
+            end
+        end
+
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
+            error('An interface function does not exist yet');
+        end
+
+        function N = size(obj)
+            N = obj.m;
+        end
+
+        function [ret] = evaluateCoefficientMatrix(obj, mat, X, Y)
+            params=obj.params;
+
+            if isa(mat,'function_handle')
+                [rows,cols]=size(mat(params,0,0));
+                matVec=mat(params,X',Y');
+                matVec=sparse(matVec);
+                side=max(length(X),length(Y));
+            else
+                matVec=mat;
+                [rows,cols]=size(matVec);
+                side=max(length(X),length(Y));
+                cols=cols/side;
+            end
+            ret=kron(ones(rows,cols),speye(side));
+
+            for ii=1:rows
+                for jj=1:cols
+                    ret((ii-1)*side+1:ii*side,(jj-1)*side+1:jj*side)=diag(matVec(ii,(jj-1)*side+1:jj*side));
+                end
+            end
+        end
+
+
+        function [closure, penalty]=boundary_condition_char(obj,boundary)
+            params=obj.params;
+            x=obj.x; y=obj.y;
+            side=max(length(x),length(y));
+
+            switch boundary
+                case {'w','W','west'}
+                    e_=obj.e_w;
+                    mat=obj.matrices.A;
+                    boundPos='l';
+                    Hi=obj.Hxi;
+                    [V,Vi,D,signVec]=obj.matrixDiag(mat,x(1),y);
+                case {'e','E','east'}
+                    e_=obj.e_e;
+                    mat=obj.matrices.A;
+                    boundPos='r';
+                    Hi=obj.Hxi;
+                    [V,Vi,D,signVec]=obj.matrixDiag(mat,x(end),y);
+                case {'s','S','south'}
+                    e_=obj.e_s;
+                    mat=obj.matrices.B;
+                    boundPos='l';
+                    Hi=obj.Hxi;
+                    [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(1));
+                case {'n','N','north'}
+                    e_=obj.e_n;
+                    mat=obj.matrices.B;
+                    boundPos='r';
+                    Hi=obj.Hxi;
+                    [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(end));
+            end
+
+            pos=signVec(1); zeroval=signVec(2); neg=signVec(3);
+
+            switch boundPos
+                case {'l'}
+                    tau=sparse(obj.n*side,pos*side);
+                    Vi_plus=Vi(1:pos*side,:);
+                    tau(1:pos*side,:)=-abs(D(1:pos*side,1:pos*side));
+                    closure=Hi*e_*V*tau*Vi_plus*e_';
+                    penalty=-Hi*e_*V*tau*Vi_plus;
+                case {'r'}
+                    tau=sparse(obj.n*side,neg*side);
+                    tau((pos+zeroval)*side+1:obj.n*side,:)=-abs(D((pos+zeroval)*side+1:obj.n*side,(pos+zeroval)*side+1:obj.n*side));
+                    Vi_minus=Vi((pos+zeroval)*side+1:obj.n*side,:);
+                    closure=Hi*e_*V*tau*Vi_minus*e_';
+                    penalty=-Hi*e_*V*tau*Vi_minus;
+            end
+        end
+
+
+        function [closure,penalty]=boundary_condition_general(obj,boundary,L)
+            params=obj.params;
+            x=obj.x; y=obj.y;
+            side=max(length(x),length(y));
+
+            switch boundary
+                case {'w','W','west'}
+                    e_=obj.e_w;
+                    mat=obj.matrices.A;
+                    boundPos='l';
+                    Hi=obj.Hxi;
+                    [V,Vi,D,signVec]=obj.matrixDiag(mat,x(1),y);
+                    L=obj.evaluateCoefficientMatrix(L,x(1),y);
+                case {'e','E','east'}
+                    e_=obj.e_e;
+                    mat=obj.matrices.A;
+                    boundPos='r';
+                    Hi=obj.Hxi;
+                    [V,Vi,D,signVec]=obj.matrixDiag(mat,x(end),y);
+                    L=obj.evaluateCoefficientMatrix(L,x(end),y);
+                case {'s','S','south'}
+                    e_=obj.e_s;
+                    mat=obj.matrices.B;
+                    boundPos='l';
+                    Hi=obj.Hxi;
+                    [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(1));
+                    L=obj.evaluateCoefficientMatrix(L,x,y(1));
+                case {'n','N','north'}
+                    e_=obj.e_n;
+                    mat=obj.matrices.B;
+                    boundPos='r';
+                    Hi=obj.Hxi;
+                    [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(end));
+                    L=obj.evaluateCoefficientMatrix(L,x,y(end));
+            end
+
+            pos=signVec(1); zeroval=signVec(2); neg=signVec(3);
+
+            switch boundPos
+                case {'l'}
+                    tau=sparse(obj.n*side,pos*side);
+                    Vi_plus=Vi(1:pos*side,:);
+                    Vi_minus=Vi(pos*side+1:obj.n*side,:);
+                    V_plus=V(:,1:pos*side);
+                    V_minus=V(:,(pos+zeroval)*side+1:obj.n*side);
+
+                    tau(1:pos*side,:)=-abs(D(1:pos*side,1:pos*side));
+                    R=-inv(L*V_plus)*(L*V_minus);
+                    closure=Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_';
+                    penalty=-Hi*e_*V*tau*inv(L*V_plus)*L;
+                case {'r'}
+                    tau=sparse(obj.n*side,neg*side);
+                    tau((pos+zeroval)*side+1:obj.n*side,:)=-abs(D((pos+zeroval)*side+1:obj.n*side,(pos+zeroval)*side+1:obj.n*side));
+                    Vi_plus=Vi(1:pos*side,:);
+                    Vi_minus=Vi((pos+zeroval)*side+1:obj.n*side,:);
+
+                    V_plus=V(:,1:pos*side);
+                    V_minus=V(:,(pos+zeroval)*side+1:obj.n*side);
+                    R=-inv(L*V_minus)*(L*V_plus);
+                    closure=Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_';
+                    penalty=-Hi*e_*V*tau*inv(L*V_minus)*L;
+            end
+        end
+
+
+        function [V,Vi, D,signVec]=matrixDiag(obj,mat,x,y)
+            params=obj.params;
+            syms xs ys;
+            [V, D]=eig(mat(params,xs,ys));
+            xs=1;ys=1;
+            DD=eval(diag(D));
+
+            poseig=find(DD>0);
+            zeroeig=find(DD==0);
+            negeig=find(DD<0);
+            syms xs ys
+            DD=diag(D);
+
+            D=diag([DD(poseig);DD(zeroeig); DD(negeig)]);
+            V=[V(:,poseig) V(:,zeroeig) V(:,negeig)];
+            xs=x; ys=y;
+
+            side=max(length(x),length(y));
+            Dret=zeros(obj.n,side*obj.n);
+            Vret=zeros(obj.n,side*obj.n);
+            for ii=1:obj.n
+                for jj=1:obj.n
+                    Dret(jj,(ii-1)*side+1:side*ii)=eval(D(jj,ii));
+                    Vret(jj,(ii-1)*side+1:side*ii)=eval(V(jj,ii));
+                end
+            end
+
+            D=sparse(Dret);
+            V=sparse(normc(Vret));
+            V=obj.evaluateCoefficientMatrix(V,x,y);
+            D=obj.evaluateCoefficientMatrix(D,x,y);
+            Vi=inv(V);
+            signVec=[length(poseig),length(zeroeig),length(negeig)];
+        end
+
+    end
+end
\ No newline at end of file
diff -r da0131655035 -r a6ae1b104391 +scheme/hypsyst2d.m
--- a/+scheme/hypsyst2d.m	Mon Sep 26 14:19:34 2016 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,279 +0,0 @@
-classdef Hypsyst2d < scheme.Scheme
-    properties
-        m % Number of points in each direction, possibly a vector
-        n %size of system
-        h % Grid spacing
-        x,y % Grid
-        X,Y % Values of x and y for each grid point
-        order % Order accuracy for the approximation
-
-        D % non-stabalized scheme operator
-        A, B, E
-
-        H % Discrete norm
-        % Norms in the x and y directions
-        Hxi,Hyi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir.
-        I_x,I_y, I_N
-        e_w, e_e, e_s, e_n
-        params %parameters for the coeficient matrices
-        matrices
-    end
-
-
-    methods
-        function obj = Hypsyst2d(m, lim, order, A, B, E, params)
-            default_arg('E', [])
-            xlim = lim{1};
-            ylim = lim{2};
-
-            if length(m) == 1
-                m = [m m];
-            end
-
-            m_x = m(1);
-            m_y = m(2);
-            obj.params = params;
-
-            obj.matrices = matrices;
-
-            ops_x = sbp.D2Standard(m_x,xlim,order);
-            ops_y = sbp.D2Standard(m_y,ylim,order);
-
-            obj.x = ops_x.x;
-            obj.y = ops_y.x;
-
-            obj.X = kr(obj.x,ones(m_y,1));
-            obj.Y = kr(ones(m_x,1),obj.y);
-
-            obj.A = obj.evaluateCoefficientMatrix(matrices.A, obj.X, obj.Y);
-            obj.B = obj.evaluateCoefficientMatrix(matrices.B, obj.X, obj.Y);
-            obj.E = obj.evaluateCoefficientMatrix(matrices.E, obj.X, obj.Y);
-
-            obj.n = length(matrices.A(obj.params,0,0));
-
-            I_n = eye(obj.n);I_x = speye(m_x);
-            obj.I_x = I_x;
-            I_y = speye(m_y);
-            obj.I_y = I_y;
-
-
-            D1_x = kr(I_n, ops_x.D1, I_y);
-            obj.Hxi = kr(I_n, ops_x.HI, I_y);
-            D1_y = kr(I_n, I_x, ops_y.D1));
-            obj.Hyi = kr(I_n, I_x, ops_y.HI));
-
-            obj.e_w = kr(I_n, ops_x.e_l, I_y);
-            obj.e_e = kr(I_n, ops_x.e_r, I_y);
-            obj.e_s = kr(I_n, I_x, ops_y.e_l);
-            obj.e_n = kr(I_n, I_x, ops_y.e_r);
-
-            obj.m=m;
-            obj.h=[ops_x.h ops_y.h];
-            obj.order=order;
-
-            obj.D=-obj.A*D1_x-obj.B*D1_y-obj.E;
-
-        end
-
-        % Closure functions return the opertors applied to the own doamin to close the boundary
-        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
-        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
-        %       type                is a string specifying the type of boundary condition if there are several.
-        %       data                is a function returning the data that should be applied at the boundary.
-        function [closure, penalty] = boundary_condition(obj,boundary,type,L)
-            default_arg('type','char');
-            switch type
-                case{'c','char'}
-                    [closure,penalty]=boundary_condition_char(obj,boundary);
-                case{'general'}
-                    [closure,penalty]=boundary_condition_general(obj,boundary,L);
-                otherwise
-                    error('No such boundary condition')
-            end
-        end
-
-        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
-            error('An interface function does not exist yet');
-        end
-
-        function N = size(obj)
-            N = obj.m;
-        end
-
-        function [ret] = evaluateCoefficientMatrix(obj, mat, X, Y)
-            params=obj.params;
-
-            if isa(mat,'function_handle')
-                [rows,cols]=size(mat(params,0,0));
-                matVec=mat(params,X',Y');
-                matVec=sparse(matVec);
-                side=max(length(X),length(Y));
-            else
-                matVec=mat;
-                [rows,cols]=size(matVec);
-                side=max(length(X),length(Y));
-                cols=cols/side;
-            end
-            ret=kron(ones(rows,cols),speye(side));
-
-            for ii=1:rows
-                for jj=1:cols
-                    ret((ii-1)*side+1:ii*side,(jj-1)*side+1:jj*side)=diag(matVec(ii,(jj-1)*side+1:jj*side));
-                end
-            end
-        end
-
-
-        function [closure, penalty]=boundary_condition_char(obj,boundary)
-            params=obj.params;
-            x=obj.x; y=obj.y;
-            side=max(length(x),length(y));
-
-            switch boundary
-                case {'w','W','west'}
-                    e_=obj.e_w;
-                    mat=obj.matrices.A;
-                    boundPos='l';
-                    Hi=obj.Hxi;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,x(1),y);
-                case {'e','E','east'}
-                    e_=obj.e_e;
-                    mat=obj.matrices.A;
-                    boundPos='r';
-                    Hi=obj.Hxi;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,x(end),y);
-                case {'s','S','south'}
-                    e_=obj.e_s;
-                    mat=obj.matrices.B;
-                    boundPos='l';
-                    Hi=obj.Hxi;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(1));
-                case {'n','N','north'}
-                    e_=obj.e_n;
-                    mat=obj.matrices.B;
-                    boundPos='r';
-                    Hi=obj.Hxi;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(end));
-            end
-
-            pos=signVec(1); zeroval=signVec(2); neg=signVec(3);
-
-            switch boundPos
-                case {'l'}
-                    tau=sparse(obj.n*side,pos*side);
-                    Vi_plus=Vi(1:pos*side,:);
-                    tau(1:pos*side,:)=-abs(D(1:pos*side,1:pos*side));
-                    closure=Hi*e_*V*tau*Vi_plus*e_';
-                    penalty=-Hi*e_*V*tau*Vi_plus;
-                case {'r'}
-                    tau=sparse(obj.n*side,neg*side);
-                    tau((pos+zeroval)*side+1:obj.n*side,:)=-abs(D((pos+zeroval)*side+1:obj.n*side,(pos+zeroval)*side+1:obj.n*side));
-                    Vi_minus=Vi((pos+zeroval)*side+1:obj.n*side,:);
-                    closure=Hi*e_*V*tau*Vi_minus*e_';
-                    penalty=-Hi*e_*V*tau*Vi_minus;
-            end
-        end
-
-
-        function [closure,penalty]=boundary_condition_general(obj,boundary,L)
-            params=obj.params;
-            x=obj.x; y=obj.y;
-            side=max(length(x),length(y));
-
-            switch boundary
-                case {'w','W','west'}
-                    e_=obj.e_w;
-                    mat=obj.matrices.A;
-                    boundPos='l';
-                    Hi=obj.Hxi;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,x(1),y);
-                    L=obj.evaluateCoefficientMatrix(L,x(1),y);
-                case {'e','E','east'}
-                    e_=obj.e_e;
-                    mat=obj.matrices.A;
-                    boundPos='r';
-                    Hi=obj.Hxi;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,x(end),y);
-                    L=obj.evaluateCoefficientMatrix(L,x(end),y);
-                case {'s','S','south'}
-                    e_=obj.e_s;
-                    mat=obj.matrices.B;
-                    boundPos='l';
-                    Hi=obj.Hxi;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(1));
-                    L=obj.evaluateCoefficientMatrix(L,x,y(1));
-                case {'n','N','north'}
-                    e_=obj.e_n;
-                    mat=obj.matrices.B;
-                    boundPos='r';
-                    Hi=obj.Hxi;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(end));
-                    L=obj.evaluateCoefficientMatrix(L,x,y(end));
-            end
-
-            pos=signVec(1); zeroval=signVec(2); neg=signVec(3);
-
-            switch boundPos
-                case {'l'}
-                    tau=sparse(obj.n*side,pos*side);
-                    Vi_plus=Vi(1:pos*side,:);
-                    Vi_minus=Vi(pos*side+1:obj.n*side,:);
-                    V_plus=V(:,1:pos*side);
-                    V_minus=V(:,(pos+zeroval)*side+1:obj.n*side);
-
-                    tau(1:pos*side,:)=-abs(D(1:pos*side,1:pos*side));
-                    R=-inv(L*V_plus)*(L*V_minus);
-                    closure=Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_';
-                    penalty=-Hi*e_*V*tau*inv(L*V_plus)*L;
-                case {'r'}
-                    tau=sparse(obj.n*side,neg*side);
-                    tau((pos+zeroval)*side+1:obj.n*side,:)=-abs(D((pos+zeroval)*side+1:obj.n*side,(pos+zeroval)*side+1:obj.n*side));
-                    Vi_plus=Vi(1:pos*side,:);
-                    Vi_minus=Vi((pos+zeroval)*side+1:obj.n*side,:);
-
-                    V_plus=V(:,1:pos*side);
-                    V_minus=V(:,(pos+zeroval)*side+1:obj.n*side);
-                    R=-inv(L*V_minus)*(L*V_plus);
-                    closure=Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_';
-                    penalty=-Hi*e_*V*tau*inv(L*V_minus)*L;
-            end
-        end
-
-
-        function [V,Vi, D,signVec]=matrixDiag(obj,mat,x,y)
-            params=obj.params;
-            syms xs ys;
-            [V, D]=eig(mat(params,xs,ys));
-            xs=1;ys=1;
-            DD=eval(diag(D));
-
-            poseig=find(DD>0);
-            zeroeig=find(DD==0);
-            negeig=find(DD<0);
-            syms xs ys
-            DD=diag(D);
-
-            D=diag([DD(poseig);DD(zeroeig); DD(negeig)]);
-            V=[V(:,poseig) V(:,zeroeig) V(:,negeig)];
-            xs=x; ys=y;
-
-            side=max(length(x),length(y));
-            Dret=zeros(obj.n,side*obj.n);
-            Vret=zeros(obj.n,side*obj.n);
-            for ii=1:obj.n
-                for jj=1:obj.n
-                    Dret(jj,(ii-1)*side+1:side*ii)=eval(D(jj,ii));
-                    Vret(jj,(ii-1)*side+1:side*ii)=eval(V(jj,ii));
-                end
-            end
-
-            D=sparse(Dret);
-            V=sparse(normc(Vret));
-            V=obj.evaluateCoefficientMatrix(V,x,y);
-            D=obj.evaluateCoefficientMatrix(D,x,y);
-            Vi=inv(V);
-            signVec=[length(poseig),length(zeroeig),length(negeig)];
-        end
-
-    end
-end
\ No newline at end of file