Mercurial > repos > public > sbplib
changeset 739:8efc04e97da4 feature/poroelastic
Add Elastic curvilinear. Traction and Dirichlet BC working.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Mon, 07 May 2018 14:35:54 -0700 |
parents | aa4ef495f1fd |
children | f4e2a6a2df08 |
files | +scheme/Elastic2dCurvilinear.m |
diffstat | 1 files changed, 616 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
diff -r aa4ef495f1fd -r 8efc04e97da4 +scheme/Elastic2dCurvilinear.m --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+scheme/Elastic2dCurvilinear.m Mon May 07 14:35:54 2018 -0700 @@ -0,0 +1,616 @@ +classdef Elastic2dCurvilinear < scheme.Scheme + +% Discretizes the elastic wave equation in curvilinear coordinates. +% +% Untransformed equation: +% rho u_{i,tt} = di lambda dj u_j + dj mu di u_j + dj mu dj u_i +% +% Transformed equation: +% J*rho u_{i,tt} = dk J b_ik lambda b_jl dl u_j +% + dk J b_jk mu b_il dl u_j +% + dk J b_jk mu b_jl dl u_i +% opSet should be cell array of opSets, one per dimension. This +% is useful if we have periodic BC in one direction. + + properties + m % Number of points in each direction, possibly a vector + h % Grid spacing + + grid + dim + + order % Order of accuracy for the approximation + + % Diagonal matrices for varible coefficients + LAMBDA % Variable coefficient, related to dilation + MU % Shear modulus, variable coefficient + RHO, RHOi % Density, variable + + % Metric coefficients + b % Cell matrix of size dim x dim + J, Ji + + D % Total operator + D1 % First derivatives + + % Second derivatives + D2_lambda + D2_mu + + % Traction operators used for BC + T_l, T_r + tau_l, tau_r + + H, Hi % Inner products + phi % Borrowing constant for (d1 - e^T*D1) from R + gamma % Borrowing constant for d1 from M + H11 % First element of H + e_l, e_r + d1_l, d1_r % Normal derivatives at the boundary + E % E{i}^T picks out component i + + H_boundary_l, H_boundary_r % Boundary inner products + + % Kroneckered norms and coefficients + RHOi_kron + Ji_kron, J_kron + Hi_kron, H_kron + end + + methods + + function obj = Elastic2dCurvilinear(g ,order, lambda_fun, mu_fun, rho_fun, opSet) + default_arg('opSet',{@sbp.D2Variable, @sbp.D2Variable}); + default_arg('lambda_fun', @(x,y) 0*x+1); + default_arg('mu_fun', @(x,y) 0*x+1); + default_arg('rho_fun', @(x,y) 0*x+1); + dim = 2; + + lambda = grid.evalOn(g, lambda_fun); + mu = grid.evalOn(g, mu_fun); + rho = grid.evalOn(g, rho_fun); + m = g.size(); + obj.m = m; + m_tot = g.N(); + + % 1D operators + ops = cell(dim,1); + for i = 1:dim + ops{i} = opSet{i}(m(i), {0, 1}, order); + end + + % Borrowing constants + for i = 1:dim + beta = ops{i}.borrowing.R.delta_D; + obj.H11{i} = ops{i}.borrowing.H11; + obj.phi{i} = beta/obj.H11{i}; + obj.gamma{i} = ops{i}.borrowing.M.d1; + end + + I = cell(dim,1); + D1 = cell(dim,1); + D2 = cell(dim,1); + H = cell(dim,1); + Hi = cell(dim,1); + e_l = cell(dim,1); + e_r = cell(dim,1); + d1_l = cell(dim,1); + d1_r = cell(dim,1); + + for i = 1:dim + I{i} = speye(m(i)); + D1{i} = ops{i}.D1; + D2{i} = ops{i}.D2; + H{i} = ops{i}.H; + Hi{i} = ops{i}.HI; + e_l{i} = ops{i}.e_l; + e_r{i} = ops{i}.e_r; + d1_l{i} = ops{i}.d1_l; + d1_r{i} = ops{i}.d1_r; + end + + %====== Assemble full operators ======== + + % Variable coefficients + LAMBDA = spdiag(lambda); + obj.LAMBDA = LAMBDA; + MU = spdiag(mu); + obj.MU = MU; + RHO = spdiag(rho); + obj.RHO = RHO; + obj.RHOi = inv(RHO); + + % Allocate + obj.D1 = cell(dim,1); + obj.D2_lambda = cell(dim,dim,dim); + obj.D2_mu = cell(dim,dim,dim); + obj.e_l = cell(dim,1); + obj.e_r = cell(dim,1); + obj.d1_l = cell(dim,1); + obj.d1_r = cell(dim,1); + + % D1 + obj.D1{1} = kron(D1{1},I{2}); + obj.D1{2} = kron(I{1},D1{2}); + + % -- Metric coefficients ---- + coords = g.points(); + x = coords(:,1); + y = coords(:,2); + + x_xi = obj.D1{1}*x; + x_eta = obj.D1{2}*x; + y_xi = obj.D1{1}*y; + y_eta = obj.D1{2}*y; + + J = x_xi.*y_eta - x_eta.*y_xi; + + b = cell(dim,dim); + b{1,1} = y_eta./J; + b{1,2} = -x_eta./J; + b{2,1} = -y_xi./J; + b{2,2} = x_xi./J; + + % Scale factors for boundary integrals + beta = cell(dim,1); + beta{1} = sqrt(x_eta.^2 + y_eta.^2); + beta{2} = sqrt(x_xi.^2 + y_xi.^2); + + + J = spdiag(J); + Ji = inv(J); + for i = 1:dim + beta{i} = spdiag(beta{i}); + for j = 1:dim + b{i,j} = spdiag(b{i,j}); + end + end + obj.J = J; + obj.Ji = Ji; + obj.b = b; + %---------------------------- + + % Boundary operators + obj.e_l{1} = kron(e_l{1},I{2}); + obj.e_l{2} = kron(I{1},e_l{2}); + obj.e_r{1} = kron(e_r{1},I{2}); + obj.e_r{2} = kron(I{1},e_r{2}); + + obj.d1_l{1} = kron(d1_l{1},I{2}); + obj.d1_l{2} = kron(I{1},d1_l{2}); + obj.d1_r{1} = kron(d1_r{1},I{2}); + obj.d1_r{2} = kron(I{1},d1_r{2}); + + % D2 + for i = 1:dim + for j = 1:dim + for k = 1:dim + obj.D2_lambda{i,j,k} = sparse(m_tot); + obj.D2_mu{i,j,k} = sparse(m_tot); + end + end + end + ind = grid.funcToMatrix(g, 1:m_tot); + + % x-dir + for i = 1:dim + for j = 1:dim + for k = 1 + + coeff_lambda = J*b{i,k}*b{j,k}*lambda; + coeff_mu = J*b{j,k}*b{i,k}*mu; + + for col = 1:m(2) + D_lambda = D2{1}(coeff_lambda(ind(:,col))); + D_mu = D2{1}(coeff_mu(ind(:,col))); + + p = ind(:,col); + obj.D2_lambda{i,j,k}(p,p) = D_lambda; + obj.D2_mu{i,j,k}(p,p) = D_mu; + end + + end + end + end + + % y-dir + for i = 1:dim + for j = 1:dim + for k = 2 + + coeff_lambda = J*b{i,k}*b{j,k}*lambda; + coeff_mu = J*b{j,k}*b{i,k}*mu; + + for row = 1:m(1) + D_lambda = D2{2}(coeff_lambda(ind(row,:))); + D_mu = D2{2}(coeff_mu(ind(row,:))); + + p = ind(row,:); + obj.D2_lambda{i,j,k}(p,p) = D_lambda; + obj.D2_mu{i,j,k}(p,p) = D_mu; + end + + end + end + end + + % Quadratures + obj.H = kron(H{1},H{2}); + obj.Hi = inv(obj.H); + obj.H_boundary_l = cell(dim,1); + obj.H_boundary_l{1} = obj.e_l{1}'*beta{1}*obj.e_l{1}*H{2}; + obj.H_boundary_l{2} = obj.e_l{2}'*beta{2}*obj.e_l{2}*H{1}; + obj.H_boundary_r = cell(dim,1); + obj.H_boundary_r{1} = obj.e_r{1}'*beta{1}*obj.e_r{1}*H{2}; + obj.H_boundary_r{2} = obj.e_r{2}'*beta{2}*obj.e_r{2}*H{1}; + + % E{i}^T picks out component i. + E = cell(dim,1); + I = speye(m_tot,m_tot); + for i = 1:dim + e = sparse(dim,1); + e(i) = 1; + E{i} = kron(I,e); + end + obj.E = E; + + % Differentiation matrix D (without SAT) + D2_lambda = obj.D2_lambda; + D2_mu = obj.D2_mu; + D1 = obj.D1; + D = sparse(dim*m_tot,dim*m_tot); + d = @kroneckerDelta; % Kronecker delta + db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta + for i = 1:dim + for j = 1:dim + for k = 1:dim + for l = 1:dim + D = D + E{i}*Ji*inv(RHO)*( d(k,l)*D2_lambda{i,j,k}*E{j}' + ... + db(k,l)*D1{k}*J*b{i,k}*b{j,l}*LAMBDA*D1{l}*E{j}' ... + ); + + D = D + E{i}*Ji*inv(RHO)*( d(k,l)*D2_mu{i,j,k}*E{j}' + ... + db(k,l)*D1{k}*J*b{j,k}*b{i,l}*MU*D1{l}*E{j}' ... + ); + + D = D + E{i}*Ji*inv(RHO)*( d(k,l)*D2_mu{j,j,k}*E{i}' + ... + db(k,l)*D1{k}*J*b{j,k}*b{j,l}*MU*D1{l}*E{i}' ... + ); + + end + end + end + end + obj.D = D; + %=========================================% + + % Numerical traction operators for BC. + % Because d1 =/= e0^T*D1, the numerical tractions are different + % at every boundary. + T_l = cell(dim,1); + T_r = cell(dim,1); + tau_l = cell(dim,1); + tau_r = cell(dim,1); + % tau^{j}_i = sum_k T^{j}_{ik} u_k + + d1_l = obj.d1_l; + d1_r = obj.d1_r; + e_l = obj.e_l; + e_r = obj.e_r; + + % Loop over boundaries + for j = 1:dim + T_l{j} = cell(dim,dim); + T_r{j} = cell(dim,dim); + tau_l{j} = cell(dim,1); + tau_r{j} = cell(dim,1); + + % Loop over components + for i = 1:dim + tau_l{j}{i} = sparse(m_tot,dim*m_tot); + tau_r{j}{i} = sparse(m_tot,dim*m_tot); + + % Loop over components that T_{ik}^{(j)} acts on + for k = 1:dim + + T_l{j}{i,k} = sparse(m_tot,m_tot); + T_r{j}{i,k} = sparse(m_tot,m_tot); + + for m = 1:dim + for l = 1:dim + T_l{j}{i,k} = T_l{j}{i,k} + ... + -d(k,l)* J*b{i,j}*b{k,m}*LAMBDA*(d(m,j)*e_l{m}*d1_l{m}' + db(m,j)*D1{m}) ... + -d(k,l)* J*b{k,j}*b{i,m}*MU*(d(m,j)*e_l{m}*d1_l{m}' + db(m,j)*D1{m}) ... + -d(i,k)* J*b{l,j}*b{l,m}*MU*(d(m,j)*e_l{m}*d1_l{m}' + db(m,j)*D1{m}); + + T_r{j}{i,k} = T_r{j}{i,k} + ... + d(k,l)* J*b{i,j}*b{k,m}*LAMBDA*(d(m,j)*e_r{m}*d1_r{m}' + db(m,j)*D1{m}) + ... + d(k,l)* J*b{k,j}*b{i,m}*MU*(d(m,j)*e_r{m}*d1_r{m}' + db(m,j)*D1{m}) + ... + d(i,k)* J*b{l,j}*b{l,m}*MU*(d(m,j)*e_r{m}*d1_r{m}' + db(m,j)*D1{m}); + end + end + + T_l{j}{i,k} = inv(beta{j})*T_l{j}{i,k}; + T_r{j}{i,k} = inv(beta{j})*T_r{j}{i,k}; + + tau_l{j}{i} = tau_l{j}{i} + T_l{j}{i,k}*E{k}'; + tau_r{j}{i} = tau_r{j}{i} + T_r{j}{i,k}*E{k}'; + end + + end + end + obj.T_l = T_l; + obj.T_r = T_r; + obj.tau_l = tau_l; + obj.tau_r = tau_r; + + % Kroneckered norms and coefficients + I_dim = speye(dim); + obj.RHOi_kron = kron(obj.RHOi, I_dim); + obj.Ji_kron = kron(obj.Ji, I_dim); + obj.Hi_kron = kron(obj.Hi, I_dim); + obj.H_kron = kron(obj.H, I_dim); + obj.J_kron = kron(obj.J, I_dim); + + % Misc. + obj.h = g.scaling(); + obj.order = order; + obj.grid = g; + obj.dim = dim; + + end + + + % Closure functions return the operators applied to the own domain to close the boundary + % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin. + % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. + % type is a cell array of strings specifying the type of boundary condition for each component. + % data is a function returning the data that should be applied at the boundary. + % neighbour_scheme is an instance of Scheme that should be interfaced to. + % neighbour_boundary is a string specifying which boundary to interface to. + function [closure, penalty] = boundary_condition(obj, boundary, type, tuning) + default_arg('type',{'free','free'}); + default_arg('tuning', 1.2); + + if ~iscell(type) + type = {type, type}; + end + + % j is the coordinate direction of the boundary + j = obj.get_boundary_number(boundary); + [e, T, tau, H_gamma] = obj.get_boundary_operator({'e','T','tau','H'}, boundary); + + E = obj.E; + Hi = obj.Hi; + LAMBDA = obj.LAMBDA; + MU = obj.MU; + RHOi = obj.RHOi; + Ji = obj.Ji; + + dim = obj.dim; + m_tot = obj.grid.N(); + + % Preallocate + closure = sparse(dim*m_tot, dim*m_tot); + penalty = cell(dim,1); + for k = 1:dim + penalty{k} = sparse(dim*m_tot, m_tot/obj.m(j)); + end + + % Loop over components that we (potentially) have different BC on + for k = 1:dim + switch type{k} + + % Dirichlet boundary condition + case {'D','d','dirichlet','Dirichlet'} + + phi = obj.phi{j}; + h = obj.h(j); + h11 = obj.H11{j}*h; + gamma = obj.gamma{j}; + + a_lambda = dim/h11 + 1/(h11*phi); + a_mu_i = 2/(gamma*h); + a_mu_ij = 2/h11 + 1/(h11*phi); + + d = @kroneckerDelta; % Kronecker delta + db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta + alpha = @(i,j) tuning*( d(i,j)* a_lambda*LAMBDA ... + + d(i,j)* a_mu_i*MU ... + + db(i,j)*a_mu_ij*MU ); + + % Loop over components that Dirichlet penalties end up on + for i = 1:dim + C = T{k,i}; + A = -d(i,k)*alpha(i,j); + B = A + C; + closure = closure + E{i}*RHOi*Hi*Ji*B'*e*H_gamma*(e'*E{k}' ); + penalty{k} = penalty{k} - E{i}*RHOi*Hi*Ji*B'*e*H_gamma; + end + + % Free boundary condition + case {'F','f','Free','free','traction','Traction','t','T'} + closure = closure - E{k}*RHOi*Ji*Hi*e*H_gamma* (e'*tau{k} ); + penalty{k} = penalty{k} + E{k}*RHOi*Ji*Hi*e*H_gamma; + + % Unknown boundary condition + otherwise + error('No such boundary condition: type = %s',type); + end + end + end + + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) + % u denotes the solution in the own domain + % v denotes the solution in the neighbour domain + % Operators without subscripts are from the own domain. + error('Not implemented'); + tuning = 1.2; + + % j is the coordinate direction of the boundary + j = obj.get_boundary_number(boundary); + j_v = neighbour_scheme.get_boundary_number(neighbour_boundary); + + % Get boundary operators + [e, T, tau, H_gamma] = obj.get_boundary_operator({'e','T','tau','H'}, boundary); + [e_v, tau_v] = neighbour_scheme.get_boundary_operator({'e','tau'}, neighbour_boundary); + + % Operators and quantities that correspond to the own domain only + Hi = obj.Hi; + RHOi = obj.RHOi; + dim = obj.dim; + + %--- Other operators ---- + m_tot_u = obj.grid.N(); + E = obj.E; + LAMBDA_u = obj.LAMBDA; + MU_u = obj.MU; + lambda_u = e'*LAMBDA_u*e; + mu_u = e'*MU_u*e; + + m_tot_v = neighbour_scheme.grid.N(); + E_v = neighbour_scheme.E; + LAMBDA_v = neighbour_scheme.LAMBDA; + MU_v = neighbour_scheme.MU; + lambda_v = e_v'*LAMBDA_v*e_v; + mu_v = e_v'*MU_v*e_v; + %------------------------- + + % Borrowing constants + phi_u = obj.phi{j}; + h_u = obj.h(j); + h11_u = obj.H11{j}*h_u; + gamma_u = obj.gamma{j}; + + phi_v = neighbour_scheme.phi{j_v}; + h_v = neighbour_scheme.h(j_v); + h11_v = neighbour_scheme.H11{j_v}*h_v; + gamma_v = neighbour_scheme.gamma{j_v}; + + % E > sum_i 1/(2*alpha_ij)*(tau_i)^2 + function [alpha_ii, alpha_ij] = computeAlpha(phi,h,h11,gamma,lambda,mu) + th1 = h11/(2*dim); + th2 = h11*phi/2; + th3 = h*gamma; + a1 = ( (th1 + th2)*th3*lambda + 4*th1*th2*mu ) / (2*th1*th2*th3); + a2 = ( 16*(th1 + th2)*lambda*mu ) / (th1*th2*th3); + alpha_ii = a1 + sqrt(a2 + a1^2); + + alpha_ij = mu*(2/h11 + 1/(phi*h11)); + end + + [alpha_ii_u, alpha_ij_u] = computeAlpha(phi_u,h_u,h11_u,gamma_u,lambda_u,mu_u); + [alpha_ii_v, alpha_ij_v] = computeAlpha(phi_v,h_v,h11_v,gamma_v,lambda_v,mu_v); + sigma_ii = tuning*(alpha_ii_u + alpha_ii_v)/4; + sigma_ij = tuning*(alpha_ij_u + alpha_ij_v)/4; + + d = @kroneckerDelta; % Kronecker delta + db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta + sigma = @(i,j) tuning*(d(i,j)*sigma_ii + db(i,j)*sigma_ij); + + % Preallocate + closure = sparse(dim*m_tot_u, dim*m_tot_u); + penalty = sparse(dim*m_tot_u, dim*m_tot_v); + + % Loop over components that penalties end up on + for i = 1:dim + closure = closure - E{i}*RHOi*Hi*e*sigma(i,j)*H_gamma*e'*E{i}'; + penalty = penalty + E{i}*RHOi*Hi*e*sigma(i,j)*H_gamma*e_v'*E_v{i}'; + + closure = closure - 1/2*E{i}*RHOi*Hi*e*H_gamma*e'*tau{i}; + penalty = penalty - 1/2*E{i}*RHOi*Hi*e*H_gamma*e_v'*tau_v{i}; + + % Loop over components that we have interface conditions on + for k = 1:dim + closure = closure + 1/2*E{i}*RHOi*Hi*T{k,i}'*e*H_gamma*e'*E{k}'; + penalty = penalty - 1/2*E{i}*RHOi*Hi*T{k,i}'*e*H_gamma*e_v'*E_v{k}'; + end + end + end + + % Returns the coordinate number and outward normal component for the boundary specified by the string boundary. + function [j, nj] = get_boundary_number(obj, boundary) + + switch boundary + case {'w','W','west','West', 'e', 'E', 'east', 'East'} + j = 1; + case {'s','S','south','South', 'n', 'N', 'north', 'North'} + j = 2; + otherwise + error('No such boundary: boundary = %s',boundary); + end + + switch boundary + case {'w','W','west','West','s','S','south','South'} + nj = -1; + case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} + nj = 1; + end + end + + % Returns the boundary operator op for the boundary specified by the string boundary. + % op: may be a cell array of strings + function [varargout] = get_boundary_operator(obj, op, boundary) + + switch boundary + case {'w','W','west','West', 'e', 'E', 'east', 'East'} + j = 1; + case {'s','S','south','South', 'n', 'N', 'north', 'North'} + j = 2; + otherwise + error('No such boundary: boundary = %s',boundary); + end + + if ~iscell(op) + op = {op}; + end + + for i = 1:length(op) + switch op{i} + case 'e' + switch boundary + case {'w','W','west','West','s','S','south','South'} + varargout{i} = obj.e_l{j}; + case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} + varargout{i} = obj.e_r{j}; + end + case 'd' + switch boundary + case {'w','W','west','West','s','S','south','South'} + varargout{i} = obj.d1_l{j}; + case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} + varargout{i} = obj.d1_r{j}; + end + case 'H' + switch boundary + case {'w','W','west','West','s','S','south','South'} + varargout{i} = obj.H_boundary_l{j}; + case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} + varargout{i} = obj.H_boundary_r{j}; + end + case 'T' + switch boundary + case {'w','W','west','West','s','S','south','South'} + varargout{i} = obj.T_l{j}; + case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} + varargout{i} = obj.T_r{j}; + end + case 'tau' + switch boundary + case {'w','W','west','West','s','S','south','South'} + varargout{i} = obj.tau_l{j}; + case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} + varargout{i} = obj.tau_r{j}; + end + otherwise + error(['No such operator: operator = ' op{i}]); + end + end + + end + + function N = size(obj) + N = obj.dim*prod(obj.m); + end + end +end