changeset 1009:87809b4762c9 feature/advectionRV

Draft implementation of scheme for advection with RV - Implement standard advection scheme. No working support for RV
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Wed, 31 Oct 2018 09:31:34 -0700
parents a6f34de60044
children f753bada1a46
files +scheme/AdvectionRV2D.m
diffstat 1 files changed, 223 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
diff -r a6f34de60044 -r 87809b4762c9 +scheme/AdvectionRV2D.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/AdvectionRV2D.m	Wed Oct 31 09:31:34 2018 -0700
@@ -0,0 +1,223 @@
+classdef AdvectionRV2D < scheme.Scheme
+    properties
+        grid % Physical grid
+        order % Order accuracy for the approximation
+        
+        D % Non-stabilized scheme operator
+        H % Discrete norm
+        H_inv  % Norm inverse
+        halfnorm_inv % Cell array of inverse halfnorm operators
+        e_l % Cell array of left boundary operators
+        e_r % Cell array of right boundary operators
+        d_l % Cell array of left boundary derivative operators
+        d_r % Cell array of right boundary derivative operators
+        waveSpeed
+    end
+
+    methods
+        function obj = AdvectionRV2D(g, operator_type, order, dissipation, waveSpeed)
+            if ~isa(g, 'grid.Cartesian') || g.D() ~= 2
+                error('Grid must be 2d cartesian');
+            end
+
+            obj.grid = g;
+            obj.order = order;
+
+            % Create cell array of 1D operators. For example D1_1d{1} = D1_x, D1_1d{2} = D1_y. 
+            [Dp_1d, Dm_1d, H_1d, H_inv_1d, d_l_1d, d_r_1d, e_l_1d, e_r_1d, I, DissipationOp_1d] = ...
+                obj.assemble1DOperators(g, operator_type, order, dissipation);
+            
+            %% 2D-operators
+            % D1 
+            D1_1d{1} = (Dp_1d{1} + Dp_1d{1})/2;
+            D1_1d{2} = (Dp_1d{2} + Dp_1d{2})/2;
+            D1_2d = obj.extendOperatorTo2D(D1_1d, I);
+            D1 = D1_2d{1} + D1_2d{2}; 
+            % D2
+
+            Dp_2d = obj.extendOperatorTo2D(Dp_1d, I);
+            Dm_2d = obj.extendOperatorTo2D(Dm_1d, I);
+            D2 = @(viscosity) Dm_2d{1}*spdiag(viscosity)*Dp_2d{1} + Dm_2d{2}*spdiag(viscosity)*Dp_2d{2};
+            % m = g.size();
+            % ind = grid.funcToMatrix(g, 1:g.N());
+            % for i = 1:g.D()
+            %     D2_2d{i} = sparse(zeros(g.N()));
+            % end
+            % % x-direction
+            % for i = 1:m(2)
+            %     p = ind(:,i);
+            %     D2_2d{1}(p,p) = @(viscosity) D2_1d{1}(viscosity(p));
+            % end
+            % % y-direction
+            % for i = 1:m(1)
+            %     p = ind(i,:);
+            %     D2_2d{2}(p,p) = @(viscosity) D2_1d{2}(viscosity(p));
+            % end
+            % D2 = D2_2d{1} + D2_2d{2}; 
+
+            obj.d_l = obj.extendOperatorTo2D(d_l_1d, I);
+            obj.d_r = obj.extendOperatorTo2D(d_r_1d, I);
+            obj.e_l = obj.extendOperatorTo2D(e_l_1d, I);
+            obj.e_r = obj.extendOperatorTo2D(e_r_1d, I);
+            obj.H = kron(H_1d{1},H_1d{2});
+            obj.H_inv = kron(H_inv_1d{1},H_inv_1d{2});
+            obj.halfnorm_inv = obj.extendOperatorTo2D(H_inv_1d, I);
+            obj.waveSpeed = waveSpeed;
+
+            % Dissipation operator
+            switch dissipation
+                case 'on'
+                    DissOp_2d = obj.extendOperatorTo2D(DissipationOp_1d, I);
+                    DissOp = DissOp_2d{1} + DissOp_2d{2};
+                    % max(abs()) or just abs()?
+                    obj.D = @(v, viscosity) (-waveSpeed.*D1 + D2(viscosity) + abs(waveSpeed).*DissOp)*v;
+                case 'off'
+                    obj.D = @(v, viscosity) (-waveSpeed.*D1 + D2(viscosity))*v;
+            end
+        end
+
+        % Closure functions return the operators applied to the own doamin to close the boundary
+        % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other domain.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       type                is a string specifying the type of boundary condition if there are several.
+        %       data                is a function returning the data that should be applied at the boundary.
+        function [closure, penalty] = boundary_condition(obj,boundary,type,data)
+            default_arg('type','robin');
+            default_arg('data',0);
+            [e, d, halfnorm_inv, i_b, s] = obj.get_boundary_ops(boundary);
+            switch type
+                case {'D', 'dirichlet'}
+                    p = s*halfnorm_inv*e;
+                    closure = @(v,viscosity) p*(v(i_b));
+                case {'N', 'nuemann'}
+                    p = s*halfnorm_inv*e;
+                    closure = @(v,viscosity) p*(viscosity(i_b).*d*v);
+                case {'R', 'robin'}
+                    p = s*halfnorm_inv*e;
+                    closure = @(v, viscosity) p*(obj.waveSpeed(i_b).*v(i_b) - 2*viscosity(i_b).*d*v);
+                otherwise
+                    error('No such boundary condition: type = %s',type);
+            end
+            switch class(data)
+                case 'double'
+                    penalty = s*p*data;
+                case 'function_handle'
+                    penalty = @(t) s*p*data(t);
+                otherwise
+                    error('Wierd data argument!')
+            end
+        end
+
+        % Ruturns the boundary ops, half-norm, boundary indices and sign for the boundary specified by the string boundary.
+        % The right boundary for each coordinate direction is considered the positive boundary
+        function [e, d, halfnorm_inv, ind_boundary, s] = get_boundary_ops(obj,boundary)
+            ind = grid.funcToMatrix(obj.grid, 1:obj.grid.N());
+            switch boundary
+                case 'w'
+                    e = obj.e_l{1};
+                    d = obj.d_l{1};
+                    halfnorm_inv = obj.halfnorm_inv{1};
+                    ind_boundary = ind(1,:);
+                    s = -1;
+                case 'e'
+                    e = obj.e_r{1};
+                    d = obj.d_r{1};
+                    halfnorm_inv = obj.halfnorm_inv{1};
+                    
+                    ind_boundary = ind(end,:);
+                    s = 1;
+                case 's'
+                    e = obj.e_l{2};
+                    d = obj.d_l{2};
+                    halfnorm_inv = obj.halfnorm_inv{2};
+                    ind_boundary = ind(:,1);
+                    s = -1;
+                case 'n'
+                    e = obj.e_r{2};
+                    d = obj.d_r{2};
+                    halfnorm_inv = obj.halfnorm_inv{2};
+                    ind_boundary = ind(:,end);
+                    s = 1;
+                otherwise
+                    error('No such boundary: boundary = %s',boundary);
+            end
+        end
+
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
+            error('An interface function does not exist yet');
+        end
+
+        function N = size(obj)
+            N = obj.grid.m;
+        end
+    end
+
+    methods(Static)
+        function [Dp, Dm, H, Hi, d_l, d_r, e_l, e_r, I, DissipationOp] = assemble1DOperators(g, operator_type, order, dissipation)
+            dim = g.D(); 
+            I = cell(dim,1);
+            D1 = cell(dim,1);
+            D2 = cell(dim,1);
+            H = cell(dim,1);
+            Hi = cell(dim,1);
+            e_l = cell(dim,1);
+            e_r = cell(dim,1);
+            d1_l = cell(dim,1);
+            d1_r = cell(dim,1);
+            DissipationOp = cell(dim,1);
+            for i = 1:dim
+                switch operator_type
+                    % case 'narrow'
+                    %     ops = sbp.D4Variable(g.m(i), g.lim{i}, order);
+                    %     D1{i} = ops.D1;
+                    %     D2{i} = ops.D2;
+                    %     d_l{i} = ops.d1_l';
+                    %     d_r{i} = ops.d1_r';
+                    %     if (strcmp(dissipation,'on'))
+                    %         DissipationOp{i} = -1*sbp.dissipationOperator(g.m(i), order, ops.HI);
+                    %     end
+                    % case 'upwind-'
+                    %     ops = sbp.D1Upwind(g.m(i), g.lim{i}, order);
+                    %     D1{i} = (ops.Dp + ops.Dm)/2;
+                    %     D2{i} = @(viscosity) ops.Dp*spdiag(viscosity)*ops.Dm;
+                    %     d_l{i} = ops.e_l'*ops.Dm;
+                    %     d_r{i} = ops.e_r'*ops.Dm;
+                    %     if (strcmp(dissipation,'on'))
+                    %         DissipationOp{i} = (ops.Dp-ops.Dm)/2;
+                    %     end
+                    case 'upwind+'
+                        ops = sbp.D1Upwind(g.m(i), g.lim{i}, order);
+                        Dp{i} = ops.Dp;
+                        Dm{i} = ops.Dm;
+                        % D1{i} = (ops.Dp + ops.Dm)/2;
+                        % D2{i} = @(viscosity) ops.Dm*spdiag(viscosity)*ops.Dp;
+                        d_l{i} = ops.e_l'*ops.Dp;
+                        d_r{i} = ops.e_r'*ops.Dp;
+                        if (strcmp(dissipation,'on'))
+                            DissipationOp{i} = (ops.Dp-ops.Dm)/2;
+                        end
+                    % case 'upwind+-'
+                    %     ops = sbp.D1Upwind(g.m(i), g.lim{i}, order);
+                    %     D1{i} = (ops.Dp + ops.Dm)/2;
+                    %     D2{i} = @(viscosity) (ops.Dp*spdiag(viscosity)*ops.Dm + ops.Dm*spdiag(viscosity)*ops.Dp)/2;
+                    %     d_l{i} = ops.e_l'*D1;
+                    %     d_r{i} = ops.e_r'*D1;
+                    %     if (strcmp(dissipation,'on'))
+                    %         DissipationOp{i} = (ops.Dp-ops.Dm)/2;
+                    %     end
+                    otherwise
+                        error('Other operator types not yet supported', operator_type);
+                end
+                H{i} = ops.H;
+                Hi{i} = ops.HI;
+                e_l{i} = ops.e_l;
+                e_r{i} = ops.e_r;
+                I{i} = speye(g.m(i));
+            end
+        end
+        function op_2d = extendOperatorTo2D(op, I)
+            op_2d{1} = kr(op{1}, I{2});
+            op_2d{2} = kr(I{1}, op{2});        
+        end
+    end
+end
\ No newline at end of file