Mercurial > repos > public > sbplib
changeset 1004:875cf8927190 feature/getBoundaryOp
Delete scheme.Wave2dCurve
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 16 Jan 2019 16:45:26 +0100 |
parents | 28754800d900 |
children | de8c979b9881 |
files | +scheme/Wave2dCurve.m |
diffstat | 1 files changed, 0 insertions(+), 359 deletions(-) [+] |
line wrap: on
line diff
diff -r 28754800d900 -r 875cf8927190 +scheme/Wave2dCurve.m --- a/+scheme/Wave2dCurve.m Wed Jan 16 16:39:47 2019 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,359 +0,0 @@ -classdef Wave2dCurve < scheme.Scheme - properties - m % Number of points in each direction, possibly a vector - h % Grid spacing - - grid - - order % Order accuracy for the approximation - - D % non-stabalized scheme operator - M % Derivative norm - c - J, Ji - a11, a12, a22 - - H % Discrete norm - Hi - H_u, H_v % Norms in the x and y directions - Hu,Hv % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. - Hi_u, Hi_v - Hiu, Hiv - e_w, e_e, e_s, e_n - du_w, dv_w - du_e, dv_e - du_s, dv_s - du_n, dv_n - gamm_u, gamm_v - lambda - - Dx, Dy % Physical derivatives - - x_u - x_v - y_u - y_v - end - - methods - function obj = Wave2dCurve(g ,order, c, opSet) - default_arg('opSet',@sbp.D2Variable); - default_arg('c', 1); - - warning('Use LaplaceCruveilinear instead') - - assert(isa(g, 'grid.Curvilinear')) - - m = g.size(); - m_u = m(1); - m_v = m(2); - m_tot = g.N(); - - h = g.scaling(); - h_u = h(1); - h_v = h(2); - - % Operators - ops_u = opSet(m_u, {0, 1}, order); - ops_v = opSet(m_v, {0, 1}, order); - - I_u = speye(m_u); - I_v = speye(m_v); - - D1_u = ops_u.D1; - D2_u = ops_u.D2; - H_u = ops_u.H; - Hi_u = ops_u.HI; - e_l_u = ops_u.e_l; - e_r_u = ops_u.e_r; - d1_l_u = ops_u.d1_l; - d1_r_u = ops_u.d1_r; - - D1_v = ops_v.D1; - D2_v = ops_v.D2; - H_v = ops_v.H; - Hi_v = ops_v.HI; - e_l_v = ops_v.e_l; - e_r_v = ops_v.e_r; - d1_l_v = ops_v.d1_l; - d1_r_v = ops_v.d1_r; - - Du = kr(D1_u,I_v); - Dv = kr(I_u,D1_v); - - % Metric derivatives - coords = g.points(); - x = coords(:,1); - y = coords(:,2); - - x_u = Du*x; - x_v = Dv*x; - y_u = Du*y; - y_v = Dv*y; - - J = x_u.*y_v - x_v.*y_u; - a11 = 1./J .* (x_v.^2 + y_v.^2); - a12 = -1./J .* (x_u.*x_v + y_u.*y_v); - a22 = 1./J .* (x_u.^2 + y_u.^2); - lambda = 1/2 * (a11 + a22 - sqrt((a11-a22).^2 + 4*a12.^2)); - - % Assemble full operators - L_12 = spdiags(a12, 0, m_tot, m_tot); - Duv = Du*L_12*Dv; - Dvu = Dv*L_12*Du; - - Duu = sparse(m_tot); - Dvv = sparse(m_tot); - ind = grid.funcToMatrix(g, 1:m_tot); - - for i = 1:m_v - D = D2_u(a11(ind(:,i))); - p = ind(:,i); - Duu(p,p) = D; - end - - for i = 1:m_u - D = D2_v(a22(ind(i,:))); - p = ind(i,:); - Dvv(p,p) = D; - end - - obj.H = kr(H_u,H_v); - obj.Hi = kr(Hi_u,Hi_v); - obj.Hu = kr(H_u,I_v); - obj.Hv = kr(I_u,H_v); - obj.Hiu = kr(Hi_u,I_v); - obj.Hiv = kr(I_u,Hi_v); - - obj.e_w = kr(e_l_u,I_v); - obj.e_e = kr(e_r_u,I_v); - obj.e_s = kr(I_u,e_l_v); - obj.e_n = kr(I_u,e_r_v); - obj.du_w = kr(d1_l_u,I_v); - obj.dv_w = (obj.e_w'*Dv)'; - obj.du_e = kr(d1_r_u,I_v); - obj.dv_e = (obj.e_e'*Dv)'; - obj.du_s = (obj.e_s'*Du)'; - obj.dv_s = kr(I_u,d1_l_v); - obj.du_n = (obj.e_n'*Du)'; - obj.dv_n = kr(I_u,d1_r_v); - - obj.x_u = x_u; - obj.x_v = x_v; - obj.y_u = y_u; - obj.y_v = y_v; - - obj.m = m; - obj.h = [h_u h_v]; - obj.order = order; - obj.grid = g; - - obj.c = c; - obj.J = spdiags(J, 0, m_tot, m_tot); - obj.Ji = spdiags(1./J, 0, m_tot, m_tot); - obj.a11 = a11; - obj.a12 = a12; - obj.a22 = a22; - obj.D = obj.Ji*c^2*(Duu + Duv + Dvu + Dvv); - obj.lambda = lambda; - - obj.Dx = spdiag( y_v./J)*Du + spdiag(-y_u./J)*Dv; - obj.Dy = spdiag(-x_v./J)*Du + spdiag( x_u./J)*Dv; - - obj.gamm_u = h_u*ops_u.borrowing.M.d1; - obj.gamm_v = h_v*ops_v.borrowing.M.d1; - end - - - % Closure functions return the opertors applied to the own doamin to close the boundary - % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. - % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. - % type is a string specifying the type of boundary condition if there are several. - % data is a function returning the data that should be applied at the boundary. - % neighbour_scheme is an instance of Scheme that should be interfaced to. - % neighbour_boundary is a string specifying which boundary to interface to. - function [closure, penalty] = boundary_condition(obj, boundary, type, parameter) - default_arg('type','neumann'); - default_arg('parameter', []); - - [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv , ~, ~, ~, scale_factor] = obj.get_boundary_ops(boundary); - switch type - % Dirichlet boundary condition - case {'D','d','dirichlet'} - % v denotes the solution in the neighbour domain - tuning = 1.2; - % tuning = 20.2; - [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t] = obj.get_boundary_ops(boundary); - - a_n = spdiag(coeff_n); - a_t = spdiag(coeff_t); - - F = (s * a_n * d_n' + s * a_t*d_t')'; - - u = obj; - - b1 = gamm*u.lambda./u.a11.^2; - b2 = gamm*u.lambda./u.a22.^2; - - tau = -1./b1 - 1./b2; - tau = tuning * spdiag(tau); - sig1 = 1; - - penalty_parameter_1 = halfnorm_inv_n*(tau + sig1*halfnorm_inv_t*F*e'*halfnorm_t)*e; - - closure = obj.Ji*obj.c^2 * penalty_parameter_1*e'; - penalty = -obj.Ji*obj.c^2 * penalty_parameter_1; - - - % Neumann boundary condition - case {'N','n','neumann'} - c = obj.c; - - a_n = spdiags(coeff_n,0,length(coeff_n),length(coeff_n)); - a_t = spdiags(coeff_t,0,length(coeff_t),length(coeff_t)); - d = (a_n * d_n' + a_t*d_t')'; - - tau1 = -s; - tau2 = 0; - tau = c.^2 * obj.Ji*(tau1*e + tau2*d); - - closure = halfnorm_inv*tau*d'; - penalty = -halfnorm_inv*tau; - - % Characteristic boundary condition - case {'characteristic', 'char', 'c'} - default_arg('parameter', 1); - beta = parameter; - c = obj.c; - - a_n = spdiags(coeff_n,0,length(coeff_n),length(coeff_n)); - a_t = spdiags(coeff_t,0,length(coeff_t),length(coeff_t)); - d = s*(a_n * d_n' + a_t*d_t')'; % outward facing normal derivative - - tau = -c.^2 * 1/beta*obj.Ji*e; - - warning('is this right?! /c?') - closure{1} = halfnorm_inv*tau/c*spdiag(scale_factor)*e'; - closure{2} = halfnorm_inv*tau*beta*d'; - penalty = -halfnorm_inv*tau; - - % Unknown, boundary condition - otherwise - error('No such boundary condition: type = %s',type); - end - end - - function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type) - % u denotes the solution in the own domain - % v denotes the solution in the neighbour domain - tuning = 1.2; - % tuning = 20.2; - [e_u, d_n_u, d_t_u, coeff_n_u, coeff_t_u, s_u, gamm_u, halfnorm_inv_u_n, halfnorm_inv_u_t, halfnorm_u_t, I_u] = obj.get_boundary_ops(boundary); - [e_v, d_n_v, d_t_v, coeff_n_v, coeff_t_v, s_v, gamm_v, halfnorm_inv_v_n, halfnorm_inv_v_t, halfnorm_v_t, I_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); - - a_n_u = spdiag(coeff_n_u); - a_t_u = spdiag(coeff_t_u); - a_n_v = spdiag(coeff_n_v); - a_t_v = spdiag(coeff_t_v); - - F_u = (s_u * a_n_u * d_n_u' + s_u * a_t_u*d_t_u')'; - F_v = (s_v * a_n_v * d_n_v' + s_v * a_t_v*d_t_v')'; - - u = obj; - v = neighbour_scheme; - - b1_u = gamm_u*u.lambda(I_u)./u.a11(I_u).^2; - b2_u = gamm_u*u.lambda(I_u)./u.a22(I_u).^2; - b1_v = gamm_v*v.lambda(I_v)./v.a11(I_v).^2; - b2_v = gamm_v*v.lambda(I_v)./v.a22(I_v).^2; - - tau = -1./(4*b1_u) -1./(4*b1_v) -1./(4*b2_u) -1./(4*b2_v); - tau = tuning * spdiag(tau); - sig1 = 1/2; - sig2 = -1/2; - - penalty_parameter_1 = halfnorm_inv_u_n*(e_u*tau + sig1*halfnorm_inv_u_t*F_u*e_u'*halfnorm_u_t*e_u); - penalty_parameter_2 = halfnorm_inv_u_n * sig2 * e_u; - - - closure = obj.Ji*obj.c^2 * ( penalty_parameter_1*e_u' + penalty_parameter_2*F_u'); - penalty = obj.Ji*obj.c^2 * (-penalty_parameter_1*e_v' + penalty_parameter_2*F_v'); - end - - % Ruturns the boundary ops and sign for the boundary specified by the string boundary. - % The right boundary is considered the positive boundary - % - % I -- the indecies of the boundary points in the grid matrix - function [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t, I, scale_factor] = get_boundary_ops(obj, boundary) - - % gridMatrix = zeros(obj.m(2),obj.m(1)); - % gridMatrix(:) = 1:numel(gridMatrix); - - ind = grid.funcToMatrix(obj.grid, 1:prod(obj.m)); - - switch boundary - case 'w' - e = obj.e_w; - d_n = obj.du_w; - d_t = obj.dv_w; - s = -1; - - I = ind(1,:); - coeff_n = obj.a11(I); - coeff_t = obj.a12(I); - scale_factor = sqrt(obj.x_v(I).^2 + obj.y_v(I).^2); - case 'e' - e = obj.e_e; - d_n = obj.du_e; - d_t = obj.dv_e; - s = 1; - - I = ind(end,:); - coeff_n = obj.a11(I); - coeff_t = obj.a12(I); - scale_factor = sqrt(obj.x_v(I).^2 + obj.y_v(I).^2); - case 's' - e = obj.e_s; - d_n = obj.dv_s; - d_t = obj.du_s; - s = -1; - - I = ind(:,1)'; - coeff_n = obj.a22(I); - coeff_t = obj.a12(I); - scale_factor = sqrt(obj.x_u(I).^2 + obj.y_u(I).^2); - case 'n' - e = obj.e_n; - d_n = obj.dv_n; - d_t = obj.du_n; - s = 1; - - I = ind(:,end)'; - coeff_n = obj.a22(I); - coeff_t = obj.a12(I); - scale_factor = sqrt(obj.x_u(I).^2 + obj.y_u(I).^2); - otherwise - error('No such boundary: boundary = %s',boundary); - end - - switch boundary - case {'w','e'} - halfnorm_inv_n = obj.Hiu; - halfnorm_inv_t = obj.Hiv; - halfnorm_t = obj.Hv; - gamm = obj.gamm_u; - case {'s','n'} - halfnorm_inv_n = obj.Hiv; - halfnorm_inv_t = obj.Hiu; - halfnorm_t = obj.Hu; - gamm = obj.gamm_v; - end - end - - function N = size(obj) - N = prod(obj.m); - end - - - end -end \ No newline at end of file