changeset 888:8732d6bd9890 feature/timesteppers

Add general Runge-Kutta class - Add a general Runge-Kutta class which time integrates the solution based on coefficients obtained from a Butcher tableau - Add butcher tableau which returns coefficents for the specified Runge-Kutta method - Remove RungKutta4proper, since obsolete
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 15 Nov 2018 17:10:01 -0800
parents 50d5a3843099
children f5e14e5986b5
files +time/+rk/butcherTableau.m +time/+rk/rungekutta.m +time/+rk/rungekutta_6.m +time/Rungekutta.m +time/Rungekutta4proper.m
diffstat 5 files changed, 116 insertions(+), 78 deletions(-) [+]
line wrap: on
line diff
diff -r 50d5a3843099 -r 8732d6bd9890 +time/+rk/butcherTableau.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+time/+rk/butcherTableau.m	Thu Nov 15 17:10:01 2018 -0800
@@ -0,0 +1,50 @@
+% Returns the coefficients used in a RK method as defined by a Butcher Tableau.
+%
+% @param method - string specifying which Runge-Kutta method to be used.
+% @return s - number of stages
+% @return a - coefficents for intermediate stages
+% @return b - weights for summing stages
+% @return c - time step coefficents for intermediate stages
+function [s,a,b,c] = butcherTableau(method)
+switch method
+    case "tvd-3"
+        % TVD (Total Variational Diminishing)
+        s = 3;
+        a = zeros(s,s-1);
+        a(2,1) = 1;
+        a(3,1) = 1/4; a(3,2) = 1/4;
+        b = [1/6, 1/6, 2/3];
+        c = [0 1 1/2];
+    case "rk4"
+        % Standard RK4
+        s = 4;
+        a = zeros(s,s-1);
+        a(2,1) = 1/2; 
+        a(3,1) = 0; a(3,2) = 1/2;
+        a(4,1) = 0; a(4,2) = 0; a(4,3) = 1;
+        b = [1/6 1/3 1/3 1/6];
+        c = [0, 1/2, 1/2, 1];
+    case "rk4-3/8"
+        % 3/8 RK4 (Kuttas method). Lower truncation error, more flops
+        s = 4;
+        a = zeros(s,s-1);
+        a(2,1) = 1/3; 
+        a(3,1) = -1/3; a(3,2) = 1;
+        a(4,1) = 1; a(4,2) = -1; a(4,3) = 1;
+        b = [1/8 3/8 3/8 1/8];
+        c = [0, 1/3, 2/3, 1];
+    case "rk6"
+        % Runge-Kutta 6 from Alshina07 
+        s = 7;
+        a = zeros(s,s-1);
+        a(2,1) = 4/7; 
+        a(3,1) = 115/112; a(3,2) = -5/16;
+        a(4,1) = 589/630; a(4,2) = 5/18; a(4,3) = -16/45;
+        a(5,1) = 229/1200 - 29/6000*sqrt(5); a(5,2) = 119/240 - 187/1200*sqrt(5); a(5,3) = -14/75 + 34/375*sqrt(5); a(5,4) = -3/100*sqrt(5);
+        a(6,1) = 71/2400 - 587/12000*sqrt(5); a(6,2) = 187/480 - 391/2400*sqrt(5); a(6,3) = -38/75 + 26/375*sqrt(5); a(6,4) = 27/80 - 3/400*sqrt(5); a(6,5) = (1+sqrt(5))/4;
+        a(7,1) = -49/480 + 43/160*sqrt(5); a(7,2) = -425/96 + 51/32*sqrt(5); a(7,3) = 52/15 - 4/5*sqrt(5); a(7,4) = -27/16 + 3/16*sqrt(5); a(7,5) = 5/4 - 3/4*sqrt(5); a(7,6) = 5/2 - 1/2*sqrt(5);
+        b = [1/12 0 0 0 5/12 5/12 1/12];
+        c = [0, 4/7, 5/7, 6/7, (5-sqrt(5))/10, (5+sqrt(5))/10, 1];
+    otherwise
+        error('That Runge-Kutta method is not implemented', method)    
+end
\ No newline at end of file
diff -r 50d5a3843099 -r 8732d6bd9890 +time/+rk/rungekutta.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+time/+rk/rungekutta.m	Thu Nov 15 17:10:01 2018 -0800
@@ -0,0 +1,20 @@
+% Takes one time step of size dt using the rungekutta method
+% starting from @arg v and where the function F(v,t) gives the
+% time derivatives. coeffs is a struct holding the RK coefficients
+% for the specific method.
+function v = rungekutta(v, t , dt, F, coeffs)
+    % Compute the intermediate stages k
+    k = zeros(length(v), coeffs.s);
+    for i = 1:coeffs.s
+        u = v;
+        for j = 1:i-1
+            u = u + dt*coeffs.a(i,j)*k(:,j);
+        end
+        k(:,i) = F(u,t+coeffs.c(i)*dt);
+    end
+    % Compute the updated solution as a linear combination
+    % of the intermediate stages.
+    for i = 1:coeffs.s
+        v = v + dt*coeffs.b(i)*k(:,i);
+    end
+end
\ No newline at end of file
diff -r 50d5a3843099 -r 8732d6bd9890 +time/+rk/rungekutta_6.m
--- a/+time/+rk/rungekutta_6.m	Thu Nov 15 16:42:58 2018 -0800
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,31 +0,0 @@
-% Takes one time step of size k using the rungekutta method
-% starting from v_0 and where the function F(v,t) gives the
-% time derivatives.
-function v = rungekutta_6(v, t , k, F)
-    s = 7
-    k = zeros(length(v),s)
-    a = zeros(7,6);
-    c = [0, 4/7, 5/7, 6/7, (5-sqrt(5))/10, (5+sqrt(5))/10, 1];
-    b = [1/12, 0, 0, 0, 5/12, 5/12, 1/12];
-    a = [
-        0,                           0,                          0,                       0,                     0,                 0;
-        4/7,                         0,                          0,                       0,                     0,                 0;
-        115/112,                     -5/16,                      0,                       0,                     0,                 0;
-        589/630,                     5/18,                       -16/45,                  0,                     0,                 0;
-        229/1200 - 29/6000*sqrt(5),  119/240 - 187/1200*sqrt(5), -14/75 + 34/375*sqrt(5), -3/100*sqrt(5),        0,                 0;
-        71/2400 - 587/12000*sqrt(5), 187/480 - 391/2400*sqrt(5), -38/75 + 26/375*sqrt(5), 27/80 - 3/400*sqrt(5), (1+sqrt(5))/4,     0;
-        -49/480 + 43/160*sqrt(5),    -425/96 + 51/32*sqrt(5),    52/15 - 4/5*sqrt(5),     -27/16 + 3/16*sqrt(5), 5/4 - 3/4*sqrt(5), 5/2 - 1/2*sqrt(5);
-    ]
-
-    for i = 1:s
-        u = v
-        for j = 1: i-1
-            u = u + h*a(i,j) * k(:,j)
-        end
-        k(:,i) = F(t+c(i)*k,u)
-    end
-
-    for i = 1:s
-        v = v + k*b(i)*k(:,i)
-    end
-end
diff -r 50d5a3843099 -r 8732d6bd9890 +time/Rungekutta.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+time/Rungekutta.m	Thu Nov 15 17:10:01 2018 -0800
@@ -0,0 +1,46 @@
+classdef Rungekutta < time.Timestepper
+    properties
+        F       % RHS of the ODE
+        k       % Time step
+        t       % Time point
+        v       % Solution vector
+        n       % Time level
+        scheme  % The scheme used for the time stepping, e.g rk4, rk6 etc.
+    end
+
+
+    methods
+        % Timesteps v_t = F(v,t), using the specified RK method from t = t0 with
+        % timestep k and initial conditions v = v0
+        function obj = Rungekutta(F, k, t0, v0, method)
+            default_arg('method',"rk4");
+            obj.F = F;
+            obj.k = k;
+            obj.t = t0;
+            obj.v = v0;
+            obj.n = 0;
+            % TODO: method "rk4" is also implemented in the butcher tableau, but the rungekutta_4.m implementation
+            % might be slightly more efficient. Need to do some profiling before deciding whether or not to keep it.
+            if (method == "rk4")
+                obj.scheme = @time.rk.rungekutta_4;
+            else
+                % Extract the coefficients for the specified method
+                % used for the RK updates from the Butcher tableua.
+                [s,a,b,c] = time.rk.butcherTableau(method);
+                coeffs = struct('s',s,'a',a,'b',b,'c',c);
+                obj.scheme = @(v,t,dt,F) time.rk.rungekutta(v, t , dt, F, coeffs);
+            end
+        end
+
+        function [v,t] = getV(obj)
+            v = obj.v;
+            t = obj.t;
+        end
+
+        function obj = step(obj)
+            obj.v = obj.scheme(obj.v, obj.t, obj.k, obj.F);
+            obj.t = obj.t + obj.k;
+            obj.n = obj.n + 1;
+        end
+    end
+end
\ No newline at end of file
diff -r 50d5a3843099 -r 8732d6bd9890 +time/Rungekutta4proper.m
--- a/+time/Rungekutta4proper.m	Thu Nov 15 16:42:58 2018 -0800
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,47 +0,0 @@
-classdef Rungekutta4proper < time.Timestepper
-    properties
-        F
-        k
-        t
-        v
-        m
-        n
-    end
-
-
-    methods
-        % Timesteps v_t = F(v,t), using RK4 fromt t = t0 with timestep k and initial conditions v = v0
-        function obj = Rungekutta4proper(F, k, t0, v0)
-            obj.F = F;
-            obj.k = k;
-            obj.t = t0;
-            obj.v = v0;
-            obj.m = length(v0);
-            obj.n = 0;
-        end
-        
-        function [v, t] = getV(obj)
-            v = obj.v;
-            t = obj.t
-
-        end
-
-        function state = getState(obj)
-            state = struct('v', obj.v, 't', obj.t, 'k', obj.k);
-        end
-
-        function obj = step(obj)
-            obj.v = time.rk.rungekutta_4(obj.v, obj.t, obj.k, obj.F);
-            obj.t = obj.t + obj.k;
-            obj.n = obj.n + 1;
-        end
-    end
-
-
-    methods (Static)
-        function k = getTimeStep(lambda)
-            k = rk4.get_rk4_time_step(lambda);
-        end
-    end
-
-end
\ No newline at end of file