changeset 325:72468bc9b63f feature/beams

Renamed some operator implementations.
author Jonatan Werpers <jonatan@werpers.com>
date Mon, 26 Sep 2016 09:55:16 +0200
parents c0cbffcf6513
children b19e142fcae1
files +sbp/+implementations/d4_lonely_4_min_boundary_points.m +sbp/+implementations/d4_lonely_6_2.m +sbp/+implementations/d4_lonely_6_3.m +sbp/+implementations/d4_lonely_6_min_boundary_points.m +sbp/+implementations/d4_lonely_8_higher_boundary_order.m +sbp/+implementations/d4_lonely_8_min_boundary_points.m +sbp/+implementations/d4_variable_4_min_boundary_points.m +sbp/+implementations/d4_variable_6_2.m +sbp/+implementations/d4_variable_6_3.m +sbp/+implementations/d4_variable_6_min_boundary_points.m +sbp/+implementations/d4_variable_8_higher_boundary_order.m +sbp/+implementations/d4_variable_8_min_boundary_points.m +sbp/D4Lonely.m
diffstat 13 files changed, 455 insertions(+), 455 deletions(-) [+]
line wrap: on
line diff
diff -r c0cbffcf6513 -r 72468bc9b63f +sbp/+implementations/d4_lonely_4_min_boundary_points.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/+implementations/d4_lonely_4_min_boundary_points.m	Mon Sep 26 09:55:16 2016 +0200
@@ -0,0 +1,81 @@
+function [H, HI, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_4_min_boundary_points(m,h)
+    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+    %%% 4:de ordn. SBP Finita differens         %%%
+    %%% operatorer framtagna av Mark Carpenter  %%%
+    %%%                                         %%%
+    %%% H           (Normen)                    %%%
+    %%% D1=H^(-1)Q  (approx f?rsta derivatan)   %%%
+    %%% D2          (approx andra derivatan)    %%%
+    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+    %H?r med endast 4 randpunkter
+
+
+    BP = 4;
+    if(m<2*BP)
+        error(['Operator requires at least ' num2str(2*BP) ' grid points']);
+    end
+
+
+    % Norm
+    Hv = ones(m,1);
+    Hv(1:4) = [17/48 59/48 43/48 49/48];
+    Hv(m-3:m) = rot90(Hv(1:4),2);
+    Hv = h*Hv;
+    H = spdiag(Hv, 0);
+    HI = spdiag(1./Hv, 0);
+
+
+    % Boundary operators
+    e_l = sparse(m,1);
+    e_l(1) = 1;
+    e_r = rot90(e_l, 2);
+
+    d1_l = sparse(m,1);
+    d1_l(1:4) = 1/h*[-11/6 3 -3/2 1/3];
+    d1_r = -rot90(d1_l);
+
+    d2_l = sparse(m,1);
+    d2_l(1:4) = 1/h^2*[2 -5 4 -1];
+    d2_r = rot90(d2_l, 2);
+
+    d3_l = sparse(m,1);
+    d3_l(1:4) = 1/h^3*[-1 3 -3 1];
+    d3_r = -rot90(d3_l, 2);
+
+
+    % First derivative
+    stencil = [1/12 -2/3 0 2/3 -1/12];
+    diags = [-1 0 1];
+
+    Q_U = [
+        0 0.59e2/0.96e2 -0.1e1/0.12e2 -0.1e1/0.32e2;
+         -0.59e2/0.96e2 0 0.59e2/0.96e2 0;
+         0.1e1/0.12e2 -0.59e2/0.96e2 0 0.59e2/0.96e2;
+         0.1e1/0.32e2 0 -0.59e2/0.96e2 0;
+    ];
+
+    Q = stripeMatrix(stencil, diags, m);
+    Q(1:4,1:4)=Q_U;
+    Q(m-3:m,m-3:m) = -rot90(Q_U, 2);
+
+    D1 = HI*(Q - 1/2*e_l*e_l' + 1/2*e_r*e_r');
+
+    % Fourth derivative
+    stencil = [-1/6, 2, -13/2, 28/3, -13/2, 2, -1/6];
+    diags = -3:3;
+    M4 = stripeMatrix(stencil, diags, m);
+
+    M4_U=[
+        0.8e1/0.3e1 -0.37e2/0.6e1 0.13e2/0.3e1 -0.5e1/0.6e1;
+        -0.37e2/0.6e1 0.47e2/0.3e1 -13 0.11e2/0.3e1;
+        0.13e2/0.3e1 -13 0.44e2/0.3e1 -0.47e2/0.6e1;
+        -0.5e1/0.6e1 0.11e2/0.3e1 -0.47e2/0.6e1 0.29e2/0.3e1;
+    ];
+
+
+    M4(1:4,1:4) = M4_U;
+    M4(m-3:m,m-3:m) = rot90(M4_U, 2);
+    M4 = 1/h^3*M4;
+
+    D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r');
+end
\ No newline at end of file
diff -r c0cbffcf6513 -r 72468bc9b63f +sbp/+implementations/d4_lonely_6_2.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/+implementations/d4_lonely_6_2.m	Mon Sep 26 09:55:16 2016 +0200
@@ -0,0 +1,76 @@
+function [H, HI, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_6_2(m,h)
+    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+    %%% 6:te ordn. SBP Finita differens         %%%
+    %%% operatorer med diagonal norm            %%%
+    %%% Extension to variable koeff             %%%
+    %%%                                         %%%
+    %%% H           (Normen)                    %%%
+    %%% D1=H^(-1)Q  (approx f?rsta derivatan)   %%%
+    %%% D2          (approx andra derivatan)    %%%
+    %%% D2=HI*(R+C*D*S                          %%%
+    %%%                                         %%%
+    %%% R=-D1'*H*C*D1-RR                        %%%
+    %%%                                         %%%
+    %%% RR ?r dissipation)                      %%%
+    %%% Dissipationen uppbyggd av D4:           %%%
+    %%% DI=D4*B*H*D4                            %%%
+    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+    % H?r med 6 RP ist?llet f?r 8 f?r D4 operatorn, dock samma randderivator
+    % Denna ?r noggrannare, och har 2a ordningens randdslutning och b?r ge 6te
+    % ordningens konvergens. Hade dock ingen fri parameter att optimera
+
+    BP = 6;
+    if(m<2*BP)
+        error(['Operator requires at least ' num2str(2*BP) ' grid points']);
+    end
+
+    % Norm
+    Hv = ones(m,1);
+    Hv(1:6) = [0.181e3/0.576e3, 0.1343e4/0.960e3, 0.293e3/0.480e3, 0.1811e4/0.1440e4, 0.289e3/0.320e3, 0.65e2/0.64e2];
+    Hv(m-5:m) = rot90(Hv(1:6),2);
+    Hv = h*Hv;
+    H = spdiag(Hv, 0);
+    HI = spdiag(1./Hv, 0);
+
+
+    % Boundary operators
+    e_l = sparse(m,1);
+    e_l(1) = 1;
+    e_r = rot90(e_l, 2);
+
+    d1_l = sparse(m,1);
+    d1_l(1:6) = [-0.137e3/0.60e2 5 -5 0.10e2/0.3e1 -0.5e1/0.4e1 0.1e1/0.5e1;]/h;
+    d1_r = -rot90(d1_l);
+
+    d2_l = sparse(m,1);
+    d2_l(1:6) = [0.15e2/0.4e1 -0.77e2/0.6e1 0.107e3/0.6e1 -13 0.61e2/0.12e2 -0.5e1/0.6e1;]/h^2;
+    d2_r = rot90(d2_l, 2);
+
+    d3_l = sparse(m,1);
+    d3_l(1:6) = [-0.17e2/0.4e1 0.71e2/0.4e1 -0.59e2/0.2e1 0.49e2/0.2e1 -0.41e2/0.4e1 0.7e1/0.4e1;]/h^3;
+    d3_r = -rot90(d3_l, 2);
+
+
+    % Fourth derivative, 1th order accurate at first 8 boundary points (still
+    % yield 5th order convergence if stable: for example u_tt = -u_xxxx
+    stencil = [7/240, -2/5, 169/60, -122/15, 91/8, -122/15, 169/60, -2/5, 7/240];
+    diags = -4:4;
+    M4 = stripeMatrix(stencil, diags, m);
+
+    M4_U = [
+        0.1009e4/0.192e3 -0.7657e4/0.480e3 0.9307e4/0.480e3 -0.509e3/0.40e2 0.4621e4/0.960e3 -0.25e2/0.32e2;
+        -0.7657e4/0.480e3 0.49513e5/0.960e3 -0.4007e4/0.60e2 0.21799e5/0.480e3 -0.8171e4/0.480e3 0.2657e4/0.960e3;
+        0.9307e4/0.480e3 -0.4007e4/0.60e2 0.1399e4/0.15e2 -0.2721e4/0.40e2 0.12703e5/0.480e3 -0.521e3/0.120e3;
+        -0.509e3/0.40e2 0.21799e5/0.480e3 -0.2721e4/0.40e2 0.3349e4/0.60e2 -0.389e3/0.15e2 0.559e3/0.96e2;
+        0.4621e4/0.960e3 -0.8171e4/0.480e3 0.12703e5/0.480e3 -0.389e3/0.15e2 0.17857e5/0.960e3 -0.1499e4/0.160e3;
+        -0.25e2/0.32e2 0.2657e4/0.960e3 -0.521e3/0.120e3 0.559e3/0.96e2 -0.1499e4/0.160e3 0.2225e4/0.192e3;
+    ];
+
+
+    M4(1:6,1:6) = M4_U;
+    M4(m-5:m,m-5:m) = rot90(M4_U, 2);
+    M4 = 1/h^3*M4;
+
+    D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r');
+end
diff -r c0cbffcf6513 -r 72468bc9b63f +sbp/+implementations/d4_lonely_6_3.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/+implementations/d4_lonely_6_3.m	Mon Sep 26 09:55:16 2016 +0200
@@ -0,0 +1,70 @@
+function [H, HI, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_6_3(m,h)
+    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+    %%% 6:te ordn. SBP Finita differens         %%%
+    %%% operatorer med diagonal norm            %%%
+    %%% Extension to variable koeff             %%%
+    %%%                                         %%%
+    %%% H           (Normen)                    %%%
+    %%% D1=H^(-1)Q  (approx f?rsta derivatan)   %%%
+    %%% D2          (approx andra derivatan)    %%%
+    %%% D2=HI*(R+C*D*S                          %%%
+    %%%                                         %%%
+    %%% R=-D1'*H*C*D1-RR                        %%%
+    %%%                                         %%%
+    %%% RR ?r dissipation)                      %%%
+    %%% Dissipationen uppbyggd av D4:           %%%
+    %%% DI=D4*B*H*D4                            %%%
+    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+    % H?r med 7 RP ist?llet f?r 8 f?r D4 operatorn, dock samma randderivator
+    % Denna ?r noggrannare, och har 2a ordningens randdslutning och b?r ge 6te
+    % ordningens konvergens. Hade 2 fria parametrar att optimera
+
+    % Norm
+    Hv = ones(m,1);
+    Hv(1:7) = [0.414837907e9/0.1191965760e10, 0.475278367e9/0.397321920e9, 0.13872751e8/0.12416310e8, 0.346739027e9/0.595982880e9, 0.560227469e9/0.397321920e9, 0.322971631e9/0.397321920e9, 0.616122491e9/0.595982880e9];
+    Hv(m-6:m) = rot90(Hv(1:7),2);
+    Hv = h*Hv;
+    H = spdiag(Hv, 0);
+    HI = spdiag(1./Hv, 0);
+
+
+    % Boundary operators
+    e_l = sparse(m,1);
+    e_l(1) = 1;
+    e_r = rot90(e_l, 2);
+
+    d1_l = sparse(m,1);
+    d1_l(1:6) = [-0.137e3/0.60e2 5 -5 0.10e2/0.3e1 -0.5e1/0.4e1 0.1e1/0.5e1;]/h;
+    d1_r = -rot90(d1_l);
+
+    d2_l = sparse(m,1);
+    d2_l(1:6) = [0.15e2/0.4e1 -0.77e2/0.6e1 0.107e3/0.6e1 -13 0.61e2/0.12e2 -0.5e1/0.6e1;]/h^2;
+    d2_r = rot90(d2_l, 2);
+
+    d3_l = sparse(m,1);
+    d3_l(1:6) = [-0.17e2/0.4e1 0.71e2/0.4e1 -0.59e2/0.2e1 0.49e2/0.2e1 -0.41e2/0.4e1 0.7e1/0.4e1;]/h^3;
+    d3_r = -rot90(d3_l, 2);
+
+
+    % Fourth derivative, 1th order accurate at first 8 boundary points
+    stencil = [7/240, -2/5, 169/60, -122/15, 91/8, -122/15, 169/60, -2/5, 7/240];
+    diags = -4:4;
+    M4 = stripeMatrix(stencil, diags, m);
+
+    M4_U = [
+        0.1399708478939e13/0.263487168000e12 -0.13482796013041e14/0.834376032000e12 0.344344095859e12/0.17565811200e11 -0.3166261424681e13/0.250312809600e12 0.1508605165681e13/0.333750412800e12 -0.486270829441e12/0.834376032000e12 -0.221976356359e12/0.5006256192000e13;
+        -0.13482796013041e14/0.834376032000e12 0.7260475818391e13/0.139062672000e12 -0.27224036353e11/0.406022400e9 0.1847477458951e13/0.41718801600e11 -0.848984558161e12/0.55625068800e11 0.247494925991e12/0.139062672000e12 0.165585445559e12/0.834376032000e12;
+        0.344344095859e12/0.17565811200e11 -0.27224036353e11/0.406022400e9 0.2044938640393e13/0.22250027520e11 -0.1071086785417e13/0.16687520640e11 0.502199537033e12/0.22250027520e11 -0.143589154441e12/0.55625068800e11 -0.88181965559e11/0.333750412800e12;
+        -0.3166261424681e13/0.250312809600e12 0.1847477458951e13/0.41718801600e11 -0.1071086785417e13/0.16687520640e11 0.628860435593e12/0.12515640480e11 -0.73736245829e11/0.3337504128e10 0.195760572271e12/0.41718801600e11 -0.81156046361e11/0.250312809600e12;
+        0.1508605165681e13/0.333750412800e12 -0.848984558161e12/0.55625068800e11 0.502199537033e12/0.22250027520e11 -0.73736245829e11/0.3337504128e10 0.76725285869e11/0.4450005504e10 -0.3912429433e10/0.406022400e9 0.53227370659e11/0.17565811200e11;
+        -0.486270829441e12/0.834376032000e12 0.247494925991e12/0.139062672000e12 -0.143589154441e12/0.55625068800e11 0.195760572271e12/0.41718801600e11 -0.3912429433e10/0.406022400e9 0.1699707221791e13/0.139062672000e12 -0.6959018412841e13/0.834376032000e12;
+        -0.221976356359e12/0.5006256192000e13 0.165585445559e12/0.834376032000e12 -0.88181965559e11/0.333750412800e12 -0.81156046361e11/0.250312809600e12 0.53227370659e11/0.17565811200e11 -0.6959018412841e13/0.834376032000e12 0.3012195053939e13/0.263487168000e12;
+    ];
+
+    M4(1:7,1:7) = M4_U;
+    M4(m-6:m,m-6:m) = rot90(M4_U, 2);
+    M4 = 1/h^3*M4;
+
+    D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r');
+end
diff -r c0cbffcf6513 -r 72468bc9b63f +sbp/+implementations/d4_lonely_6_min_boundary_points.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/+implementations/d4_lonely_6_min_boundary_points.m	Mon Sep 26 09:55:16 2016 +0200
@@ -0,0 +1,74 @@
+function [H, HI, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_6_min_boundary_points(m,h)
+    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+    %%% 6:te ordn. SBP Finita differens         %%%
+    %%% operatorer med diagonal norm            %%%
+    %%% Extension to variable koeff             %%%
+    %%%                                         %%%
+    %%% H           (Normen)                    %%%
+    %%% D1=H^(-1)Q  (approx f?rsta derivatan)   %%%
+    %%% D2          (approx andra derivatan)    %%%
+    %%% D2=HI*(R+C*D*S                          %%%
+    %%%                                         %%%
+    %%% R=-D1'*H*C*D1-RR                        %%%
+    %%%                                         %%%
+    %%% RR ?r dissipation)                      %%%
+    %%% Dissipationen uppbyggd av D4:           %%%
+    %%% DI=D4*B*H*D4                            %%%
+    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+    % H?r med 6 RP ist?llet f?r 8 f?r D4 operatorn, dock samma randderivator
+
+    BP = 6;
+    if(m<2*BP)
+        error(['Operator requires at least ' num2str(2*BP) ' grid points']);
+    end
+
+    % Norm
+    Hv = ones(m,1);
+    Hv(1:6) = [13649/43200,12013/8640,2711/4320,5359/4320,7877/8640, 43801/43200];
+    Hv(m-5:m) = rot90(Hv(1:6),2);
+    Hv = h*Hv;
+    H = spdiag(Hv, 0);
+    HI = spdiag(1./Hv, 0);
+
+
+    % Boundary operators
+    e_l = sparse(m,1);
+    e_l(1) = 1;
+    e_r = rot90(e_l, 2);
+
+    d1_l = sparse(m,1);
+    d1_l(1:5) = [-25/12, 4, -3, 4/3, -1/4]/h;
+    d1_r = -rot90(d1_l);
+
+    d2_l = sparse(m,1);
+    d2_l(1:5) = [0.35e2/0.12e2 -0.26e2/0.3e1 0.19e2/0.2e1 -0.14e2/0.3e1 0.11e2/0.12e2;]/h^2;
+    d2_r = rot90(d2_l, 2);
+
+    d3_l = sparse(m,1);
+    d3_l(1:5) = [-0.5e1/0.2e1 9 -12 7 -0.3e1/0.2e1;]/h^3;
+    d3_r = -rot90(d3_l, 2);
+
+
+    % Fourth derivative, 1th order accurate at first 8 boundary points (still
+    % yield 5th order convergence if stable: for example u_tt=-u_xxxx
+
+    stencil = [7/240, -2/5, 169/60, -122/15, 91/8, -122/15, 169/60, -2/5, 7/240];
+    diags = -4:4;
+    M4 = stripeMatrix(stencil, diags, m);
+
+    M4_U=[
+        0.3504379e7/0.907200e6 -0.4613983e7/0.453600e6 0.4260437e7/0.453600e6 -0.418577e6/0.113400e6 0.524579e6/0.907200e6 0.535e3/0.18144e5;
+        -0.4613983e7/0.453600e6 0.5186159e7/0.181440e6 -0.81121e5/0.2835e4 0.218845e6/0.18144e5 -0.159169e6/0.90720e5 -0.94669e5/0.907200e6;
+        0.4260437e7/0.453600e6 -0.81121e5/0.2835e4 0.147695e6/0.4536e4 -0.384457e6/0.22680e5 0.339653e6/0.90720e5 -0.18233e5/0.113400e6;
+        -0.418577e6/0.113400e6 0.218845e6/0.18144e5 -0.384457e6/0.22680e5 0.65207e5/0.4536e4 -0.22762e5/0.2835e4 0.1181753e7/0.453600e6;
+        0.524579e6/0.907200e6 -0.159169e6/0.90720e5 0.339653e6/0.90720e5 -0.22762e5/0.2835e4 0.2006171e7/0.181440e6 -0.3647647e7/0.453600e6;
+        0.535e3/0.18144e5 -0.94669e5/0.907200e6 -0.18233e5/0.113400e6 0.1181753e7/0.453600e6 -0.3647647e7/0.453600e6 0.10305271e8/0.907200e6;
+    ];
+
+    M4(1:6,1:6) = M4_U;
+    M4(m-5:m,m-5:m) = rot90(M4_U, 2);
+    M4 = 1/h^3*M4;
+
+    D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r');
+end
diff -r c0cbffcf6513 -r 72468bc9b63f +sbp/+implementations/d4_lonely_8_higher_boundary_order.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/+implementations/d4_lonely_8_higher_boundary_order.m	Mon Sep 26 09:55:16 2016 +0200
@@ -0,0 +1,75 @@
+function [H, HI, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_8_higher_boundary_order(m,h)
+    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+    %%% 8:te ordn. SBP Finita differens         %%%
+    %%% operatorer med diagonal norm            %%%
+    %%%                                         %%%
+    %%%                                         %%%
+    %%% H           (Normen)                    %%%
+    %%% D1=H^(-1)Q  (approx f?rsta derivatan)   %%%
+    %%% D2          (approx andra derivatan)    %%%
+    %%% D2=HI*(R+C*D*S                          %%%
+    %%%                                         %%%
+    %%% R=-D1'*H*C*D1-RR                        %%%
+    %%%                                         %%%
+    %%% RR ?r dissipation)                      %%%
+    %%% Dissipationen uppbyggd av D4:           %%%
+    %%% DI=D4*B*H*D4                            %%%
+    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+    %This is 3rd order accurate at the boundary. Not same norm as D1 operator
+
+    BP = 8;
+    if(m<2*BP)
+        error(['Operator requires at least ' num2str(2*BP) ' grid points']);
+    end
+
+    % Norm
+    Hv = ones(m,1);
+    Hv(1:8) = [0.7488203e7/0.25401600e8, 0.5539027e7/0.3628800e7, 0.308923e6/0.1209600e7, 0.1307491e7/0.725760e6, 0.59407e5/0.145152e6, 0.1548947e7/0.1209600e7, 0.3347963e7/0.3628800e7, 0.25641187e8/0.25401600e8];
+    Hv(m-7:m) = rot90(Hv(1:8),2);
+    Hv = h*Hv;
+    H = spdiag(Hv, 0);
+    HI = spdiag(1./Hv, 0);
+
+
+    % Boundary operators
+    e_l = sparse(m,1);
+    e_l(1) = 1;
+    e_r = rot90(e_l, 2);
+
+    d1_l = sparse(m,1);
+    d1_l(1:7) = [-0.49e2/0.20e2 6 -0.15e2/0.2e1 0.20e2/0.3e1 -0.15e2/0.4e1 0.6e1/0.5e1 -0.1e1/0.6e1]/h;
+    d1_r = -rot90(d1_l);
+
+    d2_l = sparse(m,1);
+    d2_l(1:7) = [0.203e3/0.45e2 -0.87e2/0.5e1 0.117e3/0.4e1 -0.254e3/0.9e1 0.33e2/0.2e1 -0.27e2/0.5e1 0.137e3/0.180e3]/h^2;
+    d2_r = rot90(d2_l, 2);
+
+    d3_l = sparse(m,1);
+    d3_l(1:7) = [-0.49e2/0.8e1 29 -0.461e3/0.8e1 62 -0.307e3/0.8e1 13 -0.15e2/0.8e1]/h^3;
+    d3_r = -rot90(d3_l, 2);
+
+
+
+    % Fourth derivative, 1th order accurate at first 8 boundary points (still
+    % yield 5th order convergence if stable: for example u_tt = -u_xxxx
+
+    stencil = [-0.41e2/0.7560e4, 0.1261e4/0.15120e5, -0.541e3/0.840e3, 0.4369e4/0.1260e4, -0.1669e4/0.180e3, 0.1529e4/0.120e3, -0.1669e4/0.180e3, 0.4369e4/0.1260e4, -0.541e3/0.840e3, 0.1261e4/0.15120e5,-0.41e2/0.7560e4];
+    diags = -5:5;
+
+    M4_U = [
+        0.1031569831e10/0.155675520e9 -0.32874237931e11/0.1452971520e10 0.3069551773e10/0.90810720e8 -0.658395212131e12/0.21794572800e11 0.31068454007e11/0.1816214400e10 -0.39244130657e11/0.7264857600e10 0.1857767503e10/0.2724321600e10 0.1009939e7/0.49420800e8;
+        -0.32874237931e11/0.1452971520e10 0.12799022387e11/0.155675520e9 -0.134456503627e12/0.1037836800e10 0.15366749479e11/0.129729600e9 -0.207640325549e12/0.3113510400e10 0.5396424073e10/0.259459200e9 -0.858079351e9/0.345945600e9 -0.19806607e8/0.170270100e9;
+        0.3069551773e10/0.90810720e8 -0.134456503627e12/0.1037836800e10 0.6202056779e10/0.28828800e8 -0.210970327081e12/0.1037836800e10 0.2127730129e10/0.18532800e8 -0.4048692749e10/0.115315200e9 0.1025943959e10/0.259459200e9 0.71054663e8/0.290594304e9;
+        -0.658395212131e12/0.21794572800e11 0.15366749479e11/0.129729600e9 -0.210970327081e12/0.1037836800e10 0.31025293213e11/0.155675520e9 -0.1147729001e10/0.9884160e7 0.1178067773e10/0.32432400e8 -0.13487255581e11/0.3113510400e10 -0.231082547e9/0.1816214400e10;
+        0.31068454007e11/0.1816214400e10 -0.207640325549e12/0.3113510400e10 0.2127730129e10/0.18532800e8 -0.1147729001e10/0.9884160e7 0.11524865123e11/0.155675520e9 -0.29754506009e11/0.1037836800e10 0.14231221e8/0.2316600e7 -0.15030629699e11/0.21794572800e11;
+        -0.39244130657e11/0.7264857600e10 0.5396424073e10/0.259459200e9 -0.4048692749e10/0.115315200e9 0.1178067773e10/0.32432400e8 -0.29754506009e11/0.1037836800e10 0.572247737e9/0.28828800e8 -0.11322059051e11/0.1037836800e10 0.3345834083e10/0.908107200e9;
+        0.1857767503e10/0.2724321600e10 -0.858079351e9/0.345945600e9 0.1025943959e10/0.259459200e9 -0.13487255581e11/0.3113510400e10 0.14231221e8/0.2316600e7 -0.11322059051e11/0.1037836800e10 0.10478882597e11/0.778377600e9 -0.68446325191e11/0.7264857600e10;
+        0.1009939e7/0.49420800e8 -0.19806607e8/0.170270100e9 0.71054663e8/0.290594304e9 -0.231082547e9/0.1816214400e10 -0.15030629699e11/0.21794572800e11 0.3345834083e10/0.908107200e9 -0.68446325191e11/0.7264857600e10 0.9944747557e10/0.778377600e9;
+    ];
+
+    M4(1:8,1:8) = M4_U;
+    M4(m-7:m,m-7:m) = rot90(M4_U, 2);
+    M4 = 1/h^3*M4;
+
+    D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r');
+end
diff -r c0cbffcf6513 -r 72468bc9b63f +sbp/+implementations/d4_lonely_8_min_boundary_points.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/+implementations/d4_lonely_8_min_boundary_points.m	Mon Sep 26 09:55:16 2016 +0200
@@ -0,0 +1,73 @@
+function [H, HI, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_8_min_boundary_points(m,h)
+    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+    %%% 8:te ordn. SBP Finita differens         %%%
+    %%% operatorer med diagonal norm            %%%
+    %%%                                         %%%
+    %%%                                         %%%
+    %%% H           (Normen)                    %%%
+    %%% D1=H^(-1)Q  (approx f?rsta derivatan)   %%%
+    %%% D2          (approx andra derivatan)    %%%
+    %%% D2=HI*(R+C*D*S                          %%%
+    %%%                                         %%%
+    %%% R=-D1'*H*C*D1-RR                        %%%
+    %%%                                         %%%
+    %%% RR ?r dissipation)                      %%%
+    %%% Dissipationen uppbyggd av D4:           %%%
+    %%% DI=D4*B*H*D4                            %%%
+    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+    BP = 8;
+    if(m<2*BP)
+        error(['Operator requires at least ' num2str(2*BP) ' grid points']);
+    end
+
+    % Norm
+    Hv = ones(m,1);
+    Hv(1:8) = [1498139/5080320, 1107307/725760, 20761/80640, 1304999/725760, 299527/725760, 103097/80640, 670091/725760, 5127739/5080320];
+    Hv(m-7:m) = rot90(Hv(1:8),2);
+    Hv = h*Hv;
+    H = spdiag(Hv, 0);
+    HI = spdiag(1./Hv, 0);
+
+
+    % Boundary operators
+    e_l = sparse(m,1);
+    e_l(1) = 1;
+    e_r = rot90(e_l, 2);
+
+    d1_l = sparse(m,1);
+    d1_l(1:6) = [-0.137e3/0.60e2 5 -5 0.10e2/0.3e1 -0.5e1/0.4e1 0.1e1/0.5e1;]/h;
+    d1_r = -rot90(d1_l);
+
+    d2_l = sparse(m,1);
+    d2_l(1:6) = [0.15e2/0.4e1 -0.77e2/0.6e1 0.107e3/0.6e1 -13 0.61e2/0.12e2 -0.5e1/0.6e1;]/h^2;
+    d2_r = rot90(d2_l, 2);
+
+    d3_l = sparse(m,1);
+    d3_l(1:6) = [-0.17e2/0.4e1 0.71e2/0.4e1 -0.59e2/0.2e1 0.49e2/0.2e1 -0.41e2/0.4e1 0.7e1/0.4e1;]/h^3;
+    d3_r = -rot90(d3_l, 2);
+
+
+    % Fourth derivative, 1th order accurate at first 8 boundary points
+
+    stencil = [-0.41e2/0.7560e4, 0.1261e4/0.15120e5,-0.541e3/0.840e3,0.4369e4/0.1260e4,-0.1669e4/0.180e3,0.1529e4/0.120e3,-0.1669e4/0.180e3,0.4369e4/0.1260e4,-0.541e3/0.840e3, 0.1261e4/0.15120e5,-0.41e2/0.7560e4];
+    diags = -5:5;
+    M4 = stripeMatrix(stencil, diags, m);
+
+    M4_U = [
+        0.151705142321e12/0.29189160000e11 -0.25643455801727e14/0.1634592960000e13 0.286417898677e12/0.15135120000e11 -0.4038072020317e13/0.326918592000e12 0.96455968907e11/0.20432412000e11 -0.151076916769e12/0.181621440000e12 0.14511526363e11/0.408648240000e12 -0.196663079e9/0.33359040000e11;
+         -0.25643455801727e14/0.1634592960000e13 0.735383382473e12/0.14594580000e11 -0.5035391734409e13/0.77837760000e11 0.20392440917e11/0.467026560e9 -0.109540902413e12/0.6671808000e10 0.2488686539e10/0.884520000e9 -0.2798067539e10/0.33359040000e11 0.6433463591e10/0.408648240000e12;
+         0.286417898677e12/0.15135120000e11 -0.5035391734409e13/0.77837760000e11 0.145019791981e12/0.1621620000e10 -0.333577111061e12/0.5189184000e10 0.18928722391e11/0.778377600e9 -0.93081704557e11/0.25945920000e11 -0.372660319e9/0.3243240000e10 0.2861399869e10/0.544864320000e12;
+         -0.4038072020317e13/0.326918592000e12 0.20392440917e11/0.467026560e9 -0.333577111061e12/0.5189184000e10 0.59368471277e11/0.1167566400e10 -0.201168708569e12/0.9340531200e10 0.1492314487e10/0.432432000e9 0.1911896257e10/0.9340531200e10 0.24383341e8/0.2554051500e10;
+         0.96455968907e11/0.20432412000e11 -0.109540902413e12/0.6671808000e10 0.18928722391e11/0.778377600e9 -0.201168708569e12/0.9340531200e10 0.1451230301e10/0.106142400e9 -0.103548247007e12/0.15567552000e11 0.27808437809e11/0.11675664000e11 -0.36870830713e11/0.65383718400e11;
+         -0.151076916769e12/0.181621440000e12 0.2488686539e10/0.884520000e9 -0.93081704557e11/0.25945920000e11 0.1492314487e10/0.432432000e9 -0.103548247007e12/0.15567552000e11 0.1229498243e10/0.115830000e9 -0.32222519717e11/0.3706560000e10 0.470092704233e12/0.136216080000e12;
+         0.14511526363e11/0.408648240000e12 -0.2798067539e10/0.33359040000e11 -0.372660319e9/0.3243240000e10 0.1911896257e10/0.9340531200e10 0.27808437809e11/0.11675664000e11 -0.32222519717e11/0.3706560000e10 0.11547819313e11/0.912161250e9 -0.15187033999199e14/0.1634592960000e13;
+         -0.196663079e9/0.33359040000e11 0.6433463591e10/0.408648240000e12 0.2861399869e10/0.544864320000e12 0.24383341e8/0.2554051500e10 -0.36870830713e11/0.65383718400e11 0.470092704233e12/0.136216080000e12 -0.15187033999199e14/0.1634592960000e13 0.33832994693e11/0.2653560000e10;
+    ];
+
+    M4(1:8,1:8) = M4_U;
+    M4(m-7:m,m-7:m) = rot90(M4_U, 2);
+    M4 = 1/h^3*M4;
+
+    D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r');
+end
diff -r c0cbffcf6513 -r 72468bc9b63f +sbp/+implementations/d4_variable_4_min_boundary_points.m
--- a/+sbp/+implementations/d4_variable_4_min_boundary_points.m	Mon Sep 26 09:51:45 2016 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,81 +0,0 @@
-function [H, HI, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_4_min_boundary_points(m,h)
-    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-    %%% 4:de ordn. SBP Finita differens         %%%
-    %%% operatorer framtagna av Mark Carpenter  %%%
-    %%%                                         %%%
-    %%% H           (Normen)                    %%%
-    %%% D1=H^(-1)Q  (approx f?rsta derivatan)   %%%
-    %%% D2          (approx andra derivatan)    %%%
-    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-    %H?r med endast 4 randpunkter
-
-
-    BP = 4;
-    if(m<2*BP)
-        error(['Operator requires at least ' num2str(2*BP) ' grid points']);
-    end
-
-
-    % Norm
-    Hv = ones(m,1);
-    Hv(1:4) = [17/48 59/48 43/48 49/48];
-    Hv(m-3:m) = rot90(Hv(1:4),2);
-    Hv = h*Hv;
-    H = spdiag(Hv, 0);
-    HI = spdiag(1./Hv, 0);
-
-
-    % Boundary operators
-    e_l = sparse(m,1);
-    e_l(1) = 1;
-    e_r = rot90(e_l, 2);
-
-    d1_l = sparse(m,1);
-    d1_l(1:4) = 1/h*[-11/6 3 -3/2 1/3];
-    d1_r = -rot90(d1_l);
-
-    d2_l = sparse(m,1);
-    d2_l(1:4) = 1/h^2*[2 -5 4 -1];
-    d2_r = rot90(d2_l, 2);
-
-    d3_l = sparse(m,1);
-    d3_l(1:4) = 1/h^3*[-1 3 -3 1];
-    d3_r = -rot90(d3_l, 2);
-
-
-    % First derivative
-    stencil = [1/12 -2/3 0 2/3 -1/12];
-    diags = [-1 0 1];
-
-    Q_U = [
-        0 0.59e2/0.96e2 -0.1e1/0.12e2 -0.1e1/0.32e2;
-         -0.59e2/0.96e2 0 0.59e2/0.96e2 0;
-         0.1e1/0.12e2 -0.59e2/0.96e2 0 0.59e2/0.96e2;
-         0.1e1/0.32e2 0 -0.59e2/0.96e2 0;
-    ];
-
-    Q = stripeMatrix(stencil, diags, m);
-    Q(1:4,1:4)=Q_U;
-    Q(m-3:m,m-3:m) = -rot90(Q_U, 2);
-
-    D1 = HI*(Q - 1/2*e_l*e_l' + 1/2*e_r*e_r');
-
-    % Fourth derivative
-    stencil = [-1/6, 2, -13/2, 28/3, -13/2, 2, -1/6];
-    diags = -3:3;
-    M4 = stripeMatrix(stencil, diags, m);
-
-    M4_U=[
-        0.8e1/0.3e1 -0.37e2/0.6e1 0.13e2/0.3e1 -0.5e1/0.6e1;
-        -0.37e2/0.6e1 0.47e2/0.3e1 -13 0.11e2/0.3e1;
-        0.13e2/0.3e1 -13 0.44e2/0.3e1 -0.47e2/0.6e1;
-        -0.5e1/0.6e1 0.11e2/0.3e1 -0.47e2/0.6e1 0.29e2/0.3e1;
-    ];
-
-
-    M4(1:4,1:4) = M4_U;
-    M4(m-3:m,m-3:m) = rot90(M4_U, 2);
-    M4 = 1/h^3*M4;
-
-    D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r');
-end
\ No newline at end of file
diff -r c0cbffcf6513 -r 72468bc9b63f +sbp/+implementations/d4_variable_6_2.m
--- a/+sbp/+implementations/d4_variable_6_2.m	Mon Sep 26 09:51:45 2016 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,76 +0,0 @@
-function [H, HI, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_6_2(m,h)
-    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-    %%% 6:te ordn. SBP Finita differens         %%%
-    %%% operatorer med diagonal norm            %%%
-    %%% Extension to variable koeff             %%%
-    %%%                                         %%%
-    %%% H           (Normen)                    %%%
-    %%% D1=H^(-1)Q  (approx f?rsta derivatan)   %%%
-    %%% D2          (approx andra derivatan)    %%%
-    %%% D2=HI*(R+C*D*S                          %%%
-    %%%                                         %%%
-    %%% R=-D1'*H*C*D1-RR                        %%%
-    %%%                                         %%%
-    %%% RR ?r dissipation)                      %%%
-    %%% Dissipationen uppbyggd av D4:           %%%
-    %%% DI=D4*B*H*D4                            %%%
-    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-    % H?r med 6 RP ist?llet f?r 8 f?r D4 operatorn, dock samma randderivator
-    % Denna ?r noggrannare, och har 2a ordningens randdslutning och b?r ge 6te
-    % ordningens konvergens. Hade dock ingen fri parameter att optimera
-
-    BP = 6;
-    if(m<2*BP)
-        error(['Operator requires at least ' num2str(2*BP) ' grid points']);
-    end
-
-    % Norm
-    Hv = ones(m,1);
-    Hv(1:6) = [0.181e3/0.576e3, 0.1343e4/0.960e3, 0.293e3/0.480e3, 0.1811e4/0.1440e4, 0.289e3/0.320e3, 0.65e2/0.64e2];
-    Hv(m-5:m) = rot90(Hv(1:6),2);
-    Hv = h*Hv;
-    H = spdiag(Hv, 0);
-    HI = spdiag(1./Hv, 0);
-
-
-    % Boundary operators
-    e_l = sparse(m,1);
-    e_l(1) = 1;
-    e_r = rot90(e_l, 2);
-
-    d1_l = sparse(m,1);
-    d1_l(1:6) = [-0.137e3/0.60e2 5 -5 0.10e2/0.3e1 -0.5e1/0.4e1 0.1e1/0.5e1;]/h;
-    d1_r = -rot90(d1_l);
-
-    d2_l = sparse(m,1);
-    d2_l(1:6) = [0.15e2/0.4e1 -0.77e2/0.6e1 0.107e3/0.6e1 -13 0.61e2/0.12e2 -0.5e1/0.6e1;]/h^2;
-    d2_r = rot90(d2_l, 2);
-
-    d3_l = sparse(m,1);
-    d3_l(1:6) = [-0.17e2/0.4e1 0.71e2/0.4e1 -0.59e2/0.2e1 0.49e2/0.2e1 -0.41e2/0.4e1 0.7e1/0.4e1;]/h^3;
-    d3_r = -rot90(d3_l, 2);
-
-
-    % Fourth derivative, 1th order accurate at first 8 boundary points (still
-    % yield 5th order convergence if stable: for example u_tt = -u_xxxx
-    stencil = [7/240, -2/5, 169/60, -122/15, 91/8, -122/15, 169/60, -2/5, 7/240];
-    diags = -4:4;
-    M4 = stripeMatrix(stencil, diags, m);
-
-    M4_U = [
-        0.1009e4/0.192e3 -0.7657e4/0.480e3 0.9307e4/0.480e3 -0.509e3/0.40e2 0.4621e4/0.960e3 -0.25e2/0.32e2;
-        -0.7657e4/0.480e3 0.49513e5/0.960e3 -0.4007e4/0.60e2 0.21799e5/0.480e3 -0.8171e4/0.480e3 0.2657e4/0.960e3;
-        0.9307e4/0.480e3 -0.4007e4/0.60e2 0.1399e4/0.15e2 -0.2721e4/0.40e2 0.12703e5/0.480e3 -0.521e3/0.120e3;
-        -0.509e3/0.40e2 0.21799e5/0.480e3 -0.2721e4/0.40e2 0.3349e4/0.60e2 -0.389e3/0.15e2 0.559e3/0.96e2;
-        0.4621e4/0.960e3 -0.8171e4/0.480e3 0.12703e5/0.480e3 -0.389e3/0.15e2 0.17857e5/0.960e3 -0.1499e4/0.160e3;
-        -0.25e2/0.32e2 0.2657e4/0.960e3 -0.521e3/0.120e3 0.559e3/0.96e2 -0.1499e4/0.160e3 0.2225e4/0.192e3;
-    ];
-
-
-    M4(1:6,1:6) = M4_U;
-    M4(m-5:m,m-5:m) = rot90(M4_U, 2);
-    M4 = 1/h^3*M4;
-
-    D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r');
-end
diff -r c0cbffcf6513 -r 72468bc9b63f +sbp/+implementations/d4_variable_6_3.m
--- a/+sbp/+implementations/d4_variable_6_3.m	Mon Sep 26 09:51:45 2016 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,70 +0,0 @@
-function [H, HI, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_6_3(m,h)
-    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-    %%% 6:te ordn. SBP Finita differens         %%%
-    %%% operatorer med diagonal norm            %%%
-    %%% Extension to variable koeff             %%%
-    %%%                                         %%%
-    %%% H           (Normen)                    %%%
-    %%% D1=H^(-1)Q  (approx f?rsta derivatan)   %%%
-    %%% D2          (approx andra derivatan)    %%%
-    %%% D2=HI*(R+C*D*S                          %%%
-    %%%                                         %%%
-    %%% R=-D1'*H*C*D1-RR                        %%%
-    %%%                                         %%%
-    %%% RR ?r dissipation)                      %%%
-    %%% Dissipationen uppbyggd av D4:           %%%
-    %%% DI=D4*B*H*D4                            %%%
-    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-    % H?r med 7 RP ist?llet f?r 8 f?r D4 operatorn, dock samma randderivator
-    % Denna ?r noggrannare, och har 2a ordningens randdslutning och b?r ge 6te
-    % ordningens konvergens. Hade 2 fria parametrar att optimera
-
-    % Norm
-    Hv = ones(m,1);
-    Hv(1:7) = [0.414837907e9/0.1191965760e10, 0.475278367e9/0.397321920e9, 0.13872751e8/0.12416310e8, 0.346739027e9/0.595982880e9, 0.560227469e9/0.397321920e9, 0.322971631e9/0.397321920e9, 0.616122491e9/0.595982880e9];
-    Hv(m-6:m) = rot90(Hv(1:7),2);
-    Hv = h*Hv;
-    H = spdiag(Hv, 0);
-    HI = spdiag(1./Hv, 0);
-
-
-    % Boundary operators
-    e_l = sparse(m,1);
-    e_l(1) = 1;
-    e_r = rot90(e_l, 2);
-
-    d1_l = sparse(m,1);
-    d1_l(1:6) = [-0.137e3/0.60e2 5 -5 0.10e2/0.3e1 -0.5e1/0.4e1 0.1e1/0.5e1;]/h;
-    d1_r = -rot90(d1_l);
-
-    d2_l = sparse(m,1);
-    d2_l(1:6) = [0.15e2/0.4e1 -0.77e2/0.6e1 0.107e3/0.6e1 -13 0.61e2/0.12e2 -0.5e1/0.6e1;]/h^2;
-    d2_r = rot90(d2_l, 2);
-
-    d3_l = sparse(m,1);
-    d3_l(1:6) = [-0.17e2/0.4e1 0.71e2/0.4e1 -0.59e2/0.2e1 0.49e2/0.2e1 -0.41e2/0.4e1 0.7e1/0.4e1;]/h^3;
-    d3_r = -rot90(d3_l, 2);
-
-
-    % Fourth derivative, 1th order accurate at first 8 boundary points
-    stencil = [7/240, -2/5, 169/60, -122/15, 91/8, -122/15, 169/60, -2/5, 7/240];
-    diags = -4:4;
-    M4 = stripeMatrix(stencil, diags, m);
-
-    M4_U = [
-        0.1399708478939e13/0.263487168000e12 -0.13482796013041e14/0.834376032000e12 0.344344095859e12/0.17565811200e11 -0.3166261424681e13/0.250312809600e12 0.1508605165681e13/0.333750412800e12 -0.486270829441e12/0.834376032000e12 -0.221976356359e12/0.5006256192000e13;
-        -0.13482796013041e14/0.834376032000e12 0.7260475818391e13/0.139062672000e12 -0.27224036353e11/0.406022400e9 0.1847477458951e13/0.41718801600e11 -0.848984558161e12/0.55625068800e11 0.247494925991e12/0.139062672000e12 0.165585445559e12/0.834376032000e12;
-        0.344344095859e12/0.17565811200e11 -0.27224036353e11/0.406022400e9 0.2044938640393e13/0.22250027520e11 -0.1071086785417e13/0.16687520640e11 0.502199537033e12/0.22250027520e11 -0.143589154441e12/0.55625068800e11 -0.88181965559e11/0.333750412800e12;
-        -0.3166261424681e13/0.250312809600e12 0.1847477458951e13/0.41718801600e11 -0.1071086785417e13/0.16687520640e11 0.628860435593e12/0.12515640480e11 -0.73736245829e11/0.3337504128e10 0.195760572271e12/0.41718801600e11 -0.81156046361e11/0.250312809600e12;
-        0.1508605165681e13/0.333750412800e12 -0.848984558161e12/0.55625068800e11 0.502199537033e12/0.22250027520e11 -0.73736245829e11/0.3337504128e10 0.76725285869e11/0.4450005504e10 -0.3912429433e10/0.406022400e9 0.53227370659e11/0.17565811200e11;
-        -0.486270829441e12/0.834376032000e12 0.247494925991e12/0.139062672000e12 -0.143589154441e12/0.55625068800e11 0.195760572271e12/0.41718801600e11 -0.3912429433e10/0.406022400e9 0.1699707221791e13/0.139062672000e12 -0.6959018412841e13/0.834376032000e12;
-        -0.221976356359e12/0.5006256192000e13 0.165585445559e12/0.834376032000e12 -0.88181965559e11/0.333750412800e12 -0.81156046361e11/0.250312809600e12 0.53227370659e11/0.17565811200e11 -0.6959018412841e13/0.834376032000e12 0.3012195053939e13/0.263487168000e12;
-    ];
-
-    M4(1:7,1:7) = M4_U;
-    M4(m-6:m,m-6:m) = rot90(M4_U, 2);
-    M4 = 1/h^3*M4;
-
-    D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r');
-end
diff -r c0cbffcf6513 -r 72468bc9b63f +sbp/+implementations/d4_variable_6_min_boundary_points.m
--- a/+sbp/+implementations/d4_variable_6_min_boundary_points.m	Mon Sep 26 09:51:45 2016 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,74 +0,0 @@
-function [H, HI, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_6_min_boundary_points(m,h)
-    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-    %%% 6:te ordn. SBP Finita differens         %%%
-    %%% operatorer med diagonal norm            %%%
-    %%% Extension to variable koeff             %%%
-    %%%                                         %%%
-    %%% H           (Normen)                    %%%
-    %%% D1=H^(-1)Q  (approx f?rsta derivatan)   %%%
-    %%% D2          (approx andra derivatan)    %%%
-    %%% D2=HI*(R+C*D*S                          %%%
-    %%%                                         %%%
-    %%% R=-D1'*H*C*D1-RR                        %%%
-    %%%                                         %%%
-    %%% RR ?r dissipation)                      %%%
-    %%% Dissipationen uppbyggd av D4:           %%%
-    %%% DI=D4*B*H*D4                            %%%
-    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-    % H?r med 6 RP ist?llet f?r 8 f?r D4 operatorn, dock samma randderivator
-
-    BP = 6;
-    if(m<2*BP)
-        error(['Operator requires at least ' num2str(2*BP) ' grid points']);
-    end
-
-    % Norm
-    Hv = ones(m,1);
-    Hv(1:6) = [13649/43200,12013/8640,2711/4320,5359/4320,7877/8640, 43801/43200];
-    Hv(m-5:m) = rot90(Hv(1:6),2);
-    Hv = h*Hv;
-    H = spdiag(Hv, 0);
-    HI = spdiag(1./Hv, 0);
-
-
-    % Boundary operators
-    e_l = sparse(m,1);
-    e_l(1) = 1;
-    e_r = rot90(e_l, 2);
-
-    d1_l = sparse(m,1);
-    d1_l(1:5) = [-25/12, 4, -3, 4/3, -1/4]/h;
-    d1_r = -rot90(d1_l);
-
-    d2_l = sparse(m,1);
-    d2_l(1:5) = [0.35e2/0.12e2 -0.26e2/0.3e1 0.19e2/0.2e1 -0.14e2/0.3e1 0.11e2/0.12e2;]/h^2;
-    d2_r = rot90(d2_l, 2);
-
-    d3_l = sparse(m,1);
-    d3_l(1:5) = [-0.5e1/0.2e1 9 -12 7 -0.3e1/0.2e1;]/h^3;
-    d3_r = -rot90(d3_l, 2);
-
-
-    % Fourth derivative, 1th order accurate at first 8 boundary points (still
-    % yield 5th order convergence if stable: for example u_tt=-u_xxxx
-
-    stencil = [7/240, -2/5, 169/60, -122/15, 91/8, -122/15, 169/60, -2/5, 7/240];
-    diags = -4:4;
-    M4 = stripeMatrix(stencil, diags, m);
-
-    M4_U=[
-        0.3504379e7/0.907200e6 -0.4613983e7/0.453600e6 0.4260437e7/0.453600e6 -0.418577e6/0.113400e6 0.524579e6/0.907200e6 0.535e3/0.18144e5;
-        -0.4613983e7/0.453600e6 0.5186159e7/0.181440e6 -0.81121e5/0.2835e4 0.218845e6/0.18144e5 -0.159169e6/0.90720e5 -0.94669e5/0.907200e6;
-        0.4260437e7/0.453600e6 -0.81121e5/0.2835e4 0.147695e6/0.4536e4 -0.384457e6/0.22680e5 0.339653e6/0.90720e5 -0.18233e5/0.113400e6;
-        -0.418577e6/0.113400e6 0.218845e6/0.18144e5 -0.384457e6/0.22680e5 0.65207e5/0.4536e4 -0.22762e5/0.2835e4 0.1181753e7/0.453600e6;
-        0.524579e6/0.907200e6 -0.159169e6/0.90720e5 0.339653e6/0.90720e5 -0.22762e5/0.2835e4 0.2006171e7/0.181440e6 -0.3647647e7/0.453600e6;
-        0.535e3/0.18144e5 -0.94669e5/0.907200e6 -0.18233e5/0.113400e6 0.1181753e7/0.453600e6 -0.3647647e7/0.453600e6 0.10305271e8/0.907200e6;
-    ];
-
-    M4(1:6,1:6) = M4_U;
-    M4(m-5:m,m-5:m) = rot90(M4_U, 2);
-    M4 = 1/h^3*M4;
-
-    D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r');
-end
diff -r c0cbffcf6513 -r 72468bc9b63f +sbp/+implementations/d4_variable_8_higher_boundary_order.m
--- a/+sbp/+implementations/d4_variable_8_higher_boundary_order.m	Mon Sep 26 09:51:45 2016 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,75 +0,0 @@
-function [H, HI, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_8_higher_boundary_order(m,h)
-    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-    %%% 8:te ordn. SBP Finita differens         %%%
-    %%% operatorer med diagonal norm            %%%
-    %%%                                         %%%
-    %%%                                         %%%
-    %%% H           (Normen)                    %%%
-    %%% D1=H^(-1)Q  (approx f?rsta derivatan)   %%%
-    %%% D2          (approx andra derivatan)    %%%
-    %%% D2=HI*(R+C*D*S                          %%%
-    %%%                                         %%%
-    %%% R=-D1'*H*C*D1-RR                        %%%
-    %%%                                         %%%
-    %%% RR ?r dissipation)                      %%%
-    %%% Dissipationen uppbyggd av D4:           %%%
-    %%% DI=D4*B*H*D4                            %%%
-    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-    %This is 3rd order accurate at the boundary. Not same norm as D1 operator
-
-    BP = 8;
-    if(m<2*BP)
-        error(['Operator requires at least ' num2str(2*BP) ' grid points']);
-    end
-
-    % Norm
-    Hv = ones(m,1);
-    Hv(1:8) = [0.7488203e7/0.25401600e8, 0.5539027e7/0.3628800e7, 0.308923e6/0.1209600e7, 0.1307491e7/0.725760e6, 0.59407e5/0.145152e6, 0.1548947e7/0.1209600e7, 0.3347963e7/0.3628800e7, 0.25641187e8/0.25401600e8];
-    Hv(m-7:m) = rot90(Hv(1:8),2);
-    Hv = h*Hv;
-    H = spdiag(Hv, 0);
-    HI = spdiag(1./Hv, 0);
-
-
-    % Boundary operators
-    e_l = sparse(m,1);
-    e_l(1) = 1;
-    e_r = rot90(e_l, 2);
-
-    d1_l = sparse(m,1);
-    d1_l(1:7) = [-0.49e2/0.20e2 6 -0.15e2/0.2e1 0.20e2/0.3e1 -0.15e2/0.4e1 0.6e1/0.5e1 -0.1e1/0.6e1]/h;
-    d1_r = -rot90(d1_l);
-
-    d2_l = sparse(m,1);
-    d2_l(1:7) = [0.203e3/0.45e2 -0.87e2/0.5e1 0.117e3/0.4e1 -0.254e3/0.9e1 0.33e2/0.2e1 -0.27e2/0.5e1 0.137e3/0.180e3]/h^2;
-    d2_r = rot90(d2_l, 2);
-
-    d3_l = sparse(m,1);
-    d3_l(1:7) = [-0.49e2/0.8e1 29 -0.461e3/0.8e1 62 -0.307e3/0.8e1 13 -0.15e2/0.8e1]/h^3;
-    d3_r = -rot90(d3_l, 2);
-
-
-
-    % Fourth derivative, 1th order accurate at first 8 boundary points (still
-    % yield 5th order convergence if stable: for example u_tt = -u_xxxx
-
-    stencil = [-0.41e2/0.7560e4, 0.1261e4/0.15120e5, -0.541e3/0.840e3, 0.4369e4/0.1260e4, -0.1669e4/0.180e3, 0.1529e4/0.120e3, -0.1669e4/0.180e3, 0.4369e4/0.1260e4, -0.541e3/0.840e3, 0.1261e4/0.15120e5,-0.41e2/0.7560e4];
-    diags = -5:5;
-
-    M4_U = [
-        0.1031569831e10/0.155675520e9 -0.32874237931e11/0.1452971520e10 0.3069551773e10/0.90810720e8 -0.658395212131e12/0.21794572800e11 0.31068454007e11/0.1816214400e10 -0.39244130657e11/0.7264857600e10 0.1857767503e10/0.2724321600e10 0.1009939e7/0.49420800e8;
-        -0.32874237931e11/0.1452971520e10 0.12799022387e11/0.155675520e9 -0.134456503627e12/0.1037836800e10 0.15366749479e11/0.129729600e9 -0.207640325549e12/0.3113510400e10 0.5396424073e10/0.259459200e9 -0.858079351e9/0.345945600e9 -0.19806607e8/0.170270100e9;
-        0.3069551773e10/0.90810720e8 -0.134456503627e12/0.1037836800e10 0.6202056779e10/0.28828800e8 -0.210970327081e12/0.1037836800e10 0.2127730129e10/0.18532800e8 -0.4048692749e10/0.115315200e9 0.1025943959e10/0.259459200e9 0.71054663e8/0.290594304e9;
-        -0.658395212131e12/0.21794572800e11 0.15366749479e11/0.129729600e9 -0.210970327081e12/0.1037836800e10 0.31025293213e11/0.155675520e9 -0.1147729001e10/0.9884160e7 0.1178067773e10/0.32432400e8 -0.13487255581e11/0.3113510400e10 -0.231082547e9/0.1816214400e10;
-        0.31068454007e11/0.1816214400e10 -0.207640325549e12/0.3113510400e10 0.2127730129e10/0.18532800e8 -0.1147729001e10/0.9884160e7 0.11524865123e11/0.155675520e9 -0.29754506009e11/0.1037836800e10 0.14231221e8/0.2316600e7 -0.15030629699e11/0.21794572800e11;
-        -0.39244130657e11/0.7264857600e10 0.5396424073e10/0.259459200e9 -0.4048692749e10/0.115315200e9 0.1178067773e10/0.32432400e8 -0.29754506009e11/0.1037836800e10 0.572247737e9/0.28828800e8 -0.11322059051e11/0.1037836800e10 0.3345834083e10/0.908107200e9;
-        0.1857767503e10/0.2724321600e10 -0.858079351e9/0.345945600e9 0.1025943959e10/0.259459200e9 -0.13487255581e11/0.3113510400e10 0.14231221e8/0.2316600e7 -0.11322059051e11/0.1037836800e10 0.10478882597e11/0.778377600e9 -0.68446325191e11/0.7264857600e10;
-        0.1009939e7/0.49420800e8 -0.19806607e8/0.170270100e9 0.71054663e8/0.290594304e9 -0.231082547e9/0.1816214400e10 -0.15030629699e11/0.21794572800e11 0.3345834083e10/0.908107200e9 -0.68446325191e11/0.7264857600e10 0.9944747557e10/0.778377600e9;
-    ];
-
-    M4(1:8,1:8) = M4_U;
-    M4(m-7:m,m-7:m) = rot90(M4_U, 2);
-    M4 = 1/h^3*M4;
-
-    D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r');
-end
diff -r c0cbffcf6513 -r 72468bc9b63f +sbp/+implementations/d4_variable_8_min_boundary_points.m
--- a/+sbp/+implementations/d4_variable_8_min_boundary_points.m	Mon Sep 26 09:51:45 2016 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,73 +0,0 @@
-function [H, HI, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_8_min_boundary_points(m,h)
-    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-    %%% 8:te ordn. SBP Finita differens         %%%
-    %%% operatorer med diagonal norm            %%%
-    %%%                                         %%%
-    %%%                                         %%%
-    %%% H           (Normen)                    %%%
-    %%% D1=H^(-1)Q  (approx f?rsta derivatan)   %%%
-    %%% D2          (approx andra derivatan)    %%%
-    %%% D2=HI*(R+C*D*S                          %%%
-    %%%                                         %%%
-    %%% R=-D1'*H*C*D1-RR                        %%%
-    %%%                                         %%%
-    %%% RR ?r dissipation)                      %%%
-    %%% Dissipationen uppbyggd av D4:           %%%
-    %%% DI=D4*B*H*D4                            %%%
-    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-    BP = 8;
-    if(m<2*BP)
-        error(['Operator requires at least ' num2str(2*BP) ' grid points']);
-    end
-
-    % Norm
-    Hv = ones(m,1);
-    Hv(1:8) = [1498139/5080320, 1107307/725760, 20761/80640, 1304999/725760, 299527/725760, 103097/80640, 670091/725760, 5127739/5080320];
-    Hv(m-7:m) = rot90(Hv(1:8),2);
-    Hv = h*Hv;
-    H = spdiag(Hv, 0);
-    HI = spdiag(1./Hv, 0);
-
-
-    % Boundary operators
-    e_l = sparse(m,1);
-    e_l(1) = 1;
-    e_r = rot90(e_l, 2);
-
-    d1_l = sparse(m,1);
-    d1_l(1:6) = [-0.137e3/0.60e2 5 -5 0.10e2/0.3e1 -0.5e1/0.4e1 0.1e1/0.5e1;]/h;
-    d1_r = -rot90(d1_l);
-
-    d2_l = sparse(m,1);
-    d2_l(1:6) = [0.15e2/0.4e1 -0.77e2/0.6e1 0.107e3/0.6e1 -13 0.61e2/0.12e2 -0.5e1/0.6e1;]/h^2;
-    d2_r = rot90(d2_l, 2);
-
-    d3_l = sparse(m,1);
-    d3_l(1:6) = [-0.17e2/0.4e1 0.71e2/0.4e1 -0.59e2/0.2e1 0.49e2/0.2e1 -0.41e2/0.4e1 0.7e1/0.4e1;]/h^3;
-    d3_r = -rot90(d3_l, 2);
-
-
-    % Fourth derivative, 1th order accurate at first 8 boundary points
-
-    stencil = [-0.41e2/0.7560e4, 0.1261e4/0.15120e5,-0.541e3/0.840e3,0.4369e4/0.1260e4,-0.1669e4/0.180e3,0.1529e4/0.120e3,-0.1669e4/0.180e3,0.4369e4/0.1260e4,-0.541e3/0.840e3, 0.1261e4/0.15120e5,-0.41e2/0.7560e4];
-    diags = -5:5;
-    M4 = stripeMatrix(stencil, diags, m);
-
-    M4_U = [
-        0.151705142321e12/0.29189160000e11 -0.25643455801727e14/0.1634592960000e13 0.286417898677e12/0.15135120000e11 -0.4038072020317e13/0.326918592000e12 0.96455968907e11/0.20432412000e11 -0.151076916769e12/0.181621440000e12 0.14511526363e11/0.408648240000e12 -0.196663079e9/0.33359040000e11;
-         -0.25643455801727e14/0.1634592960000e13 0.735383382473e12/0.14594580000e11 -0.5035391734409e13/0.77837760000e11 0.20392440917e11/0.467026560e9 -0.109540902413e12/0.6671808000e10 0.2488686539e10/0.884520000e9 -0.2798067539e10/0.33359040000e11 0.6433463591e10/0.408648240000e12;
-         0.286417898677e12/0.15135120000e11 -0.5035391734409e13/0.77837760000e11 0.145019791981e12/0.1621620000e10 -0.333577111061e12/0.5189184000e10 0.18928722391e11/0.778377600e9 -0.93081704557e11/0.25945920000e11 -0.372660319e9/0.3243240000e10 0.2861399869e10/0.544864320000e12;
-         -0.4038072020317e13/0.326918592000e12 0.20392440917e11/0.467026560e9 -0.333577111061e12/0.5189184000e10 0.59368471277e11/0.1167566400e10 -0.201168708569e12/0.9340531200e10 0.1492314487e10/0.432432000e9 0.1911896257e10/0.9340531200e10 0.24383341e8/0.2554051500e10;
-         0.96455968907e11/0.20432412000e11 -0.109540902413e12/0.6671808000e10 0.18928722391e11/0.778377600e9 -0.201168708569e12/0.9340531200e10 0.1451230301e10/0.106142400e9 -0.103548247007e12/0.15567552000e11 0.27808437809e11/0.11675664000e11 -0.36870830713e11/0.65383718400e11;
-         -0.151076916769e12/0.181621440000e12 0.2488686539e10/0.884520000e9 -0.93081704557e11/0.25945920000e11 0.1492314487e10/0.432432000e9 -0.103548247007e12/0.15567552000e11 0.1229498243e10/0.115830000e9 -0.32222519717e11/0.3706560000e10 0.470092704233e12/0.136216080000e12;
-         0.14511526363e11/0.408648240000e12 -0.2798067539e10/0.33359040000e11 -0.372660319e9/0.3243240000e10 0.1911896257e10/0.9340531200e10 0.27808437809e11/0.11675664000e11 -0.32222519717e11/0.3706560000e10 0.11547819313e11/0.912161250e9 -0.15187033999199e14/0.1634592960000e13;
-         -0.196663079e9/0.33359040000e11 0.6433463591e10/0.408648240000e12 0.2861399869e10/0.544864320000e12 0.24383341e8/0.2554051500e10 -0.36870830713e11/0.65383718400e11 0.470092704233e12/0.136216080000e12 -0.15187033999199e14/0.1634592960000e13 0.33832994693e11/0.2653560000e10;
-    ];
-
-    M4(1:8,1:8) = M4_U;
-    M4(m-7:m,m-7:m) = rot90(M4_U, 2);
-    M4 = 1/h^3*M4;
-
-    D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r');
-end
diff -r c0cbffcf6513 -r 72468bc9b63f +sbp/D4Lonely.m
--- a/+sbp/D4Lonely.m	Mon Sep 26 09:51:45 2016 +0200
+++ b/+sbp/D4Lonely.m	Mon Sep 26 09:55:16 2016 +0200
@@ -34,7 +34,7 @@
                 switch opt
                     case 'min_boundary_points'
                         [H, HI, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = ...
-                            sbp.implementations.d4_variable_4_min_boundary_points(m, obj.h);
+                            sbp.implementations.d4_lonely_4_min_boundary_points(m, obj.h);
                         % obj.borrowing.N.S2 = 0.5055;
                         % obj.borrowing.N.S3 = 0.9290;
                     otherwise
@@ -48,17 +48,17 @@
                 switch opt
                     case '2'
                         [H, HI, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = ...
-                            sbp.implementations.d4_variable_6_2(m, obj.h);
+                            sbp.implementations.d4_lonely_6_2(m, obj.h);
                         % obj.borrowing.N.S2 = 0.3259;
                         % obj.borrowing.N.S3 = 0.1580;
                     case '3'
                         [H, HI, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = ...
-                            sbp.implementations.d4_variable_6_3(m, obj.h);
+                            sbp.implementations.d4_lonely_6_3(m, obj.h);
                         % obj.borrowing.N.S2 = 0.3259;
                         % obj.borrowing.N.S3 = 0.1580;
                     case 'min_boundary_points'
                         [H, HI, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = ...
-                            sbp.implementations.d4_variable_6_min_boundary_points(m, obj.h);
+                            sbp.implementations.d4_lonely_6_min_boundary_points(m, obj.h);
                         % obj.borrowing.N.S2 = 0.3259;
                         % obj.borrowing.N.S3 = 0.1580;
                     otherwise
@@ -72,12 +72,12 @@
                 switch opt
                     case 'min_boundary_points'
                         [H, HI, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = ...
-                            sbp.implementations.d4_variable_8_min_boundary_points(m, obj.h);
+                            sbp.implementations.d4_lonely_8_min_boundary_points(m, obj.h);
                         % obj.borrowing.N.S2 = 0.3259;
                         % obj.borrowing.N.S3 = 0.1580;
                     otherwise
                         [H, HI, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = ...
-                            sbp.implementations.d4_variable_8_higher_boundary_order(m, obj.h);
+                            sbp.implementations.d4_lonely_8_higher_boundary_order(m, obj.h);
                         % obj.borrowing.N.S2 = 0.3259;
                         % obj.borrowing.N.S3 = 0.1580;
                     end