changeset 1205:3258dca12af8 feature/poroelastic

Add scheme for anisotropic curvilinear
author Martin Almquist <malmquist@stanford.edu>
date Sat, 07 Sep 2019 13:05:26 -0700
parents 687515778437
children 6b203030fb37 05a01f77d0e3
files +scheme/Elastic2dCurvilinearAnisotropic.m
diffstat 1 files changed, 424 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
diff -r 687515778437 -r 3258dca12af8 +scheme/Elastic2dCurvilinearAnisotropic.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/Elastic2dCurvilinearAnisotropic.m	Sat Sep 07 13:05:26 2019 -0700
@@ -0,0 +1,424 @@
+classdef Elastic2dCurvilinearAnisotropic < scheme.Scheme
+
+% Discretizes the elastic wave equation:
+% rho u_{i,tt} = dj C_{ijkl} dk u_j
+% in curvilinear coordinates.
+% opSet should be cell array of opSets, one per dimension. This
+% is useful if we have periodic BC in one direction.
+% Assumes fully compatible operators.
+
+    properties
+        m % Number of points in each direction, possibly a vector
+        h % Grid spacing
+
+        grid
+        dim
+
+        order % Order of accuracy for the approximation
+
+        % Diagonal matrices for variable coefficients
+        J, Ji
+        RHO % Density
+        C   % Elastic stiffness tensor
+
+        D  % Total operator
+
+        % Boundary operators in cell format, used for BC
+        T_w, T_e, T_s, T_n
+
+        % Traction operators
+        tau_w, tau_e, tau_s, tau_n      % Return vector field
+        tau1_w, tau1_e, tau1_s, tau1_n  % Return scalar field
+        tau2_w, tau2_e, tau2_s, tau2_n  % Return scalar field
+
+        % Inner products
+        H
+
+        % Boundary inner products (for scalar field)
+        H_w, H_e, H_s, H_n
+
+        % Surface Jacobian vectors
+        s_w, s_e, s_s, s_n
+
+        % Boundary restriction operators
+        e_w, e_e, e_s, e_n      % Act on vector field, return vector field at boundary
+        e1_w, e1_e, e1_s, e1_n  % Act on vector field, return scalar field at boundary
+        e2_w, e2_e, e2_s, e2_n  % Act on vector field, return scalar field at boundary
+        e_scalar_w, e_scalar_e, e_scalar_s, e_scalar_n; % Act on scalar field, return scalar field
+
+        % E{i}^T picks out component i
+        E
+
+        % Elastic2dVariableAnisotropic object for reference domain
+        refObj
+    end
+
+    methods
+
+        % The coefficients can either be function handles or grid functions
+        % optFlag -- if true, extra computations are performed, which may be helpful for optimization.
+        function obj = Elastic2dCurvilinearAnisotropic(g, order, rho, C, opSet, optFlag)
+            default_arg('rho', @(x,y) 0*x+1);
+            default_arg('opSet',{@sbp.D2VariableCompatible, @sbp.D2VariableCompatible});
+            default_arg('optFlag', false);
+            dim = 2;
+
+            C_default = cell(dim,dim,dim,dim);
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            C_default{i,j,k,l} = @(x,y) 0*x + 1;
+                        end
+                    end
+                end
+            end
+            default_arg('C', C_default);
+
+            assert(isa(g, 'grid.Curvilinear'));
+
+            if isa(rho, 'function_handle')
+                rho = grid.evalOn(g, rho);
+            end
+
+            C_mat = cell(dim,dim,dim,dim);
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            if isa(C{i,j,k,l}, 'function_handle')
+                                C{i,j,k,l} = grid.evalOn(g, C{i,j,k,l});
+                            end
+                            C_mat{i,j,k,l} = spdiag(C{i,j,k,l});
+                        end
+                    end
+                end
+            end
+            obj.C = C_mat;
+
+            m = g.size();
+            m_tot = g.N();
+
+            % 1D operators
+            m_u = m(1);
+            m_v = m(2);
+            ops_u = opSet{1}(m_u, {0, 1}, order);
+            ops_v = opSet{2}(m_v, {0, 1}, order);
+
+            h_u = ops_u.h;
+            h_v = ops_v.h;
+
+            I_u = speye(m_u);
+            I_v = speye(m_v);
+
+            D1_u = ops_u.D1;
+            H_u =  ops_u.H;
+            Hi_u = ops_u.HI;
+            e_l_u = ops_u.e_l;
+            e_r_u = ops_u.e_r;
+            d1_l_u = ops_u.d1_l;
+            d1_r_u = ops_u.d1_r;
+
+            D1_v = ops_v.D1;
+            H_v =  ops_v.H;
+            Hi_v = ops_v.HI;
+            e_l_v = ops_v.e_l;
+            e_r_v = ops_v.e_r;
+            d1_l_v = ops_v.d1_l;
+            d1_r_v = ops_v.d1_r;
+
+
+            % Logical operators
+            Du = kr(D1_u,I_v);
+            Dv = kr(I_u,D1_v);
+
+            e_w  = kr(e_l_u,I_v);
+            e_e  = kr(e_r_u,I_v);
+            e_s  = kr(I_u,e_l_v);
+            e_n  = kr(I_u,e_r_v);
+
+            % Metric coefficients
+            coords = g.points();
+            x = coords(:,1);
+            y = coords(:,2);
+
+            x_u = Du*x;
+            x_v = Dv*x;
+            y_u = Du*y;
+            y_v = Dv*y;
+
+            J = x_u.*y_v - x_v.*y_u;
+
+            K = cell(dim, dim);
+            K{1,1} = y_v./J;
+            K{1,2} = -y_u./J;
+            K{2,1} = -x_v./J;
+            K{2,2} = x_u./J;
+
+            % Wrap around Aniosotropic Cartesian
+            rho_tilde = J.*rho;
+
+            PHI = cell(dim,dim,dim,dim);
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            PHI{i,j,k,l} = 0*C{i,j,k,l};
+                            for m = 1:dim
+                                for n = 1:dim
+                                    PHI{i,j,k,l} = PHI{i,j,k,l} + J.*K{m,j}.*C{i,m,n,l}.*K{n,k};
+                                end
+                            end
+                        end
+                    end
+                end
+            end
+
+            gRef = grid.equidistant([m_u, m_v], {0,1}, {0,1});
+            refObj = scheme.Elastic2dVariableAnisotropic(gRef, order, rho_tilde, PHI, opSet);
+
+            %---- Set object properties ------
+            obj.RHO = spdiag(rho);
+
+            % Volume quadrature
+            obj.J = spdiag(J);
+            obj.Ji = spdiag(1./J);
+            obj.H = obj.J*kr(H_u,H_v);
+
+            % Boundary quadratures
+            s_w = sqrt((e_w'*x_v).^2 + (e_w'*y_v).^2);
+            s_e = sqrt((e_e'*x_v).^2 + (e_e'*y_v).^2);
+            s_s = sqrt((e_s'*x_u).^2 + (e_s'*y_u).^2);
+            s_n = sqrt((e_n'*x_u).^2 + (e_n'*y_u).^2);
+            obj.s_w = s_w;
+            obj.s_e = s_e;
+            obj.s_s = s_s;
+            obj.s_n = s_n;
+
+            obj.H_w = H_v*spdiag(s_w);
+            obj.H_e = H_v*spdiag(s_e);
+            obj.H_s = H_u*spdiag(s_s);
+            obj.H_n = H_u*spdiag(s_n);
+
+            % Restriction operators
+            obj.e_w = refObj.e_w;
+            obj.e_e = refObj.e_e;
+            obj.e_s = refObj.e_s;
+            obj.e_n = refObj.e_n;
+
+            % Adapt things from reference object
+            obj.D = refObj.D;
+            obj.E = refObj.E;
+
+            obj.e1_w = refObj.e1_w;
+            obj.e1_e = refObj.e1_e;
+            obj.e1_s = refObj.e1_s;
+            obj.e1_n = refObj.e1_n;
+
+            obj.e2_w = refObj.e2_w;
+            obj.e2_e = refObj.e2_e;
+            obj.e2_s = refObj.e2_s;
+            obj.e2_n = refObj.e2_n;
+
+            obj.e_scalar_w = refObj.e_scalar_w;
+            obj.e_scalar_e = refObj.e_scalar_e;
+            obj.e_scalar_s = refObj.e_scalar_s;
+            obj.e_scalar_n = refObj.e_scalar_n;
+
+            e1_w = (obj.e_scalar_w'*obj.E{1}')';
+            e1_e = (obj.e_scalar_e'*obj.E{1}')';
+            e1_s = (obj.e_scalar_s'*obj.E{1}')';
+            e1_n = (obj.e_scalar_n'*obj.E{1}')';
+
+            e2_w = (obj.e_scalar_w'*obj.E{2}')';
+            e2_e = (obj.e_scalar_e'*obj.E{2}')';
+            e2_s = (obj.e_scalar_s'*obj.E{2}')';
+            e2_n = (obj.e_scalar_n'*obj.E{2}')';
+
+            obj.tau1_w = (spdiag(1./s_w)*refObj.tau1_w')';
+            obj.tau1_e = (spdiag(1./s_e)*refObj.tau1_e')';
+            obj.tau1_s = (spdiag(1./s_s)*refObj.tau1_s')';
+            obj.tau1_n = (spdiag(1./s_n)*refObj.tau1_n')';
+
+            obj.tau2_w = (spdiag(1./s_w)*refObj.tau2_w')';
+            obj.tau2_e = (spdiag(1./s_e)*refObj.tau2_e')';
+            obj.tau2_s = (spdiag(1./s_s)*refObj.tau2_s')';
+            obj.tau2_n = (spdiag(1./s_n)*refObj.tau2_n')';
+
+            obj.tau_w = (refObj.e_w'*obj.e1_w*obj.tau1_w')' + (refObj.e_w'*obj.e2_w*obj.tau2_w')';
+            obj.tau_e = (refObj.e_e'*obj.e1_e*obj.tau1_e')' + (refObj.e_e'*obj.e2_e*obj.tau2_e')';
+            obj.tau_s = (refObj.e_s'*obj.e1_s*obj.tau1_s')' + (refObj.e_s'*obj.e2_s*obj.tau2_s')';
+            obj.tau_n = (refObj.e_n'*obj.e1_n*obj.tau1_n')' + (refObj.e_n'*obj.e2_n*obj.tau2_n')';
+
+            % Misc.
+            obj.refObj = refObj;
+            obj.m = refObj.m;
+            obj.h = refObj.h;
+            obj.order = order;
+            obj.grid = g;
+            obj.dim = dim;
+
+        end
+
+
+        % Closure functions return the operators applied to the own domain to close the boundary
+        % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       bc                  is a cell array of component and bc type, e.g. {1, 'd'} for Dirichlet condition
+        %                           on the first component. Can also be e.g.
+        %                           {'normal', 'd'} or {'tangential', 't'} for conditions on
+        %                           tangential/normal component.
+        %       data                is a function returning the data that should be applied at the boundary.
+        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
+        %       neighbour_boundary  is a string specifying which boundary to interface to.
+
+        % For displacement bc:
+        % bc = {comp, 'd', dComps},
+        % where
+        % dComps = vector of components with displacement BC. Default: 1:dim.
+        % In this way, we can specify one BC at a time even though the SATs depend on all BC.
+        function [closure, penalty] = boundary_condition(obj, boundary, bc, tuning)
+            default_arg('tuning', 1.0);
+            assert( iscell(bc), 'The BC type must be a 2x1 or 3x1 cell array' );
+
+            [closure, penalty] = obj.refObj.boundary_condition(boundary, bc, tuning);
+
+            type = bc{2};
+
+            switch type
+            case {'F','f','Free','free','traction','Traction','t','T'}
+                s = obj.(['s_' boundary]);
+                s = spdiag(s);
+                penalty = penalty*s;
+            end
+        end
+
+        % type     Struct that specifies the interface coupling.
+        %          Fields:
+        %          -- tuning:           penalty strength, defaults to 1.0
+        %          -- interpolation:    type of interpolation, default 'none'
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+
+            defaultType.tuning = 1.0;
+            defaultType.interpolation = 'none';
+            default_struct('type', defaultType);
+
+            [closure, penalty] = obj.refObj.interface(boundary,neighbour_scheme.refObj,neighbour_boundary,type);
+        end
+
+        % Returns the component number that is the tangential/normal component
+        % at the specified boundary
+        function comp = getComponent(obj, comp_str, boundary)
+            assertIsMember(comp_str, {'normal', 'tangential'});
+            assertIsMember(boundary, {'w', 'e', 's', 'n'});
+
+            switch boundary
+            case {'w', 'e'}
+                switch comp_str
+                case 'normal'
+                    comp = 1;
+                case 'tangential'
+                    comp = 2;
+                end
+            case {'s', 'n'}
+                switch comp_str
+                case 'normal'
+                    comp = 2;
+                case 'tangential'
+                    comp = 1;
+                end
+            end
+        end
+
+        % Returns h11 for the boundary specified by the string boundary.
+        % op -- string
+        function h11 = getBorrowing(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            switch boundary
+            case {'w','e'}
+                h11 = obj.refObj.h11{1};
+            case {'s', 'n'}
+                h11 = obj.refObj.h11{2};
+            end
+        end
+
+        % Returns the outward unit normal vector for the boundary specified by the string boundary.
+        function nu = getNormal(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            switch boundary
+            case 'w'
+                nu = [-1,0];
+            case 'e'
+                nu = [1,0];
+            case 's'
+                nu = [0,-1];
+            case 'n'
+                nu = [0,1];
+            end
+        end
+
+        % Returns the boundary operator op for the boundary specified by the string boundary.
+        % op -- string
+        function o = getBoundaryOperator(obj, op, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+            assertIsMember(op, {'e', 'e1', 'e2', 'tau', 'tau1', 'tau2'})
+
+            switch op
+                case {'e', 'e1', 'e2', 'tau', 'tau1', 'tau2'}
+                    o = obj.([op, '_', boundary]);
+            end
+
+        end
+
+        % Returns the boundary operator op for the boundary specified by the string boundary.
+        % op -- string
+        function o = getBoundaryOperatorForScalarField(obj, op, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+            assertIsMember(op, {'e'})
+
+            switch op
+
+                case 'e'
+                    o = obj.(['e_scalar', '_', boundary]);
+            end
+
+        end
+
+        % Returns the boundary operator T_ij (cell format) for the boundary specified by the string boundary.
+        % Formula: tau_i = T_ij u_j
+        % op -- string
+        function T = getBoundaryTractionOperator(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            T = obj.(['T', '_', boundary]);
+        end
+
+        % Returns square boundary quadrature matrix, of dimension
+        % corresponding to the number of boundary unknowns
+        %
+        % boundary -- string
+        function H = getBoundaryQuadrature(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            H = obj.getBoundaryQuadratureForScalarField(boundary);
+            I_dim = speye(obj.dim, obj.dim);
+            H = kron(H, I_dim);
+        end
+
+        % Returns square boundary quadrature matrix, of dimension
+        % corresponding to the number of boundary grid points
+        %
+        % boundary -- string
+        function H_b = getBoundaryQuadratureForScalarField(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            H_b = obj.(['H_', boundary]);
+        end
+
+        function N = size(obj)
+            N = obj.dim*prod(obj.m);
+        end
+    end
+end