changeset 252:07fa0d6a05bb operator_remake

Renamned class files and added nonequidistant operators.
author Martin Almquist <martin.almquist@it.uu.se>
date Wed, 07 Sep 2016 13:40:41 +0200
parents 6a5e94bb5e13
children 5b6dfa8a743d
files +sbp/BlockNorm.m +sbp/D1Upwind.m +sbp/D1_10th_10BP_5shifts.m +sbp/D1_12th_12BP_6shifts.m +sbp/D1_4th_4BP_2shifts.m +sbp/D1_6th_6BP_3shifts.m +sbp/D1_8th_8BP_4shifts.m +sbp/D1_minimal_10th_8BP_3shifts.m +sbp/D1_minimal_12th_10BP_4shifts.m +sbp/D1_minimal_4th_3BP_1shifts.m +sbp/D1_minimal_6th_5BP_2shifts.m +sbp/D1_minimal_8th_6BP_2shifts.m +sbp/D1_nonequidistant_accurate.m +sbp/D1_nonequidistant_minimal.m +sbp/D2.m +sbp/D2BlockNorm.m +sbp/D2Variable.m +sbp/D4.m +sbp/D4Compatible.m +sbp/D4CompatibleVariable.m +sbp/D4Periodic.m +sbp/Higher.m +sbp/HigherCompatible.m +sbp/HigherCompatibleVariable.m +sbp/HigherPeriodic.m +sbp/Ordinary.m +sbp/Upwind.m +sbp/Variable.m
diffstat 28 files changed, 2484 insertions(+), 485 deletions(-) [+]
line wrap: on
line diff
diff -r 6a5e94bb5e13 -r 07fa0d6a05bb +sbp/BlockNorm.m
--- a/+sbp/BlockNorm.m	Tue Sep 06 10:36:33 2016 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,55 +0,0 @@
-classdef BlockNorm < sbp.OpSet
-    properties
-        norms % Struct containing norm matrices such as H,Q, M
-        boundary  % Struct contanging vectors for boundry point approximations
-        derivatives % Struct containging differentiation operators
-        borrowing % Struct with borrowing limits for different norm matrices
-        m % Number of grid points.
-        h % Step size
-    end
-
-
-
-    methods
-        function obj = BlockNorm(m,h,order)
-
-            if order == 4
-                [H, HI, D1, D2, e_1, e_m, M,Q S_1, S_m] = sbp.blocknorm4(m,h);
-            elseif order == 6
-                [H, HI, D1, D2, e_1, e_m, M,Q S_1, S_m] = sbp.blocknorm6(m,h);
-            elseif order == 8
-                [H, HI, D1, D2, e_1, e_m, M,Q S_1, S_m] = sbp.blocknorm8(m,h);
-            elseif order == 10
-                [H, HI, D1, D2, e_1, e_m, M,Q S_1, S_m] = sbp.blocknorm10(m,h);
-            else
-                error('Invalid operator order %d.',order);
-            end
-
-            obj.h = h;
-            obj.m = m;
-
-            obj.norms.H = H;
-            obj.norms.HI = HI;
-            obj.norms.Q = Q;
-            obj.norms.M = M;
-
-            obj.boundary.e_1 = e_1;
-            obj.boundary.S_1 = S_1;
-
-            obj.boundary.e_m = e_m;
-            obj.boundary.S_m = S_m;
-
-            obj.derivatives.D1 = D1;
-            obj.derivatives.D2 = D2;
-        end
-    end
-
-    methods (Static)
-        function lambda = smallestGrid(obj)
-            error('Not implmented')
-        end
-    end
-
-
-
-end
\ No newline at end of file
diff -r 6a5e94bb5e13 -r 07fa0d6a05bb +sbp/D1Upwind.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/D1Upwind.m	Wed Sep 07 13:40:41 2016 +0200
@@ -0,0 +1,59 @@
+classdef D1Upwind < sbp.OpSet
+    properties
+        norms % Struct containing norm matrices such as H,Q, M
+        boundary  % Struct contanging vectors for boundry point approximations
+        derivatives % Struct containging differentiation operators
+        borrowing % Struct with borrowing limits for different norm matrices
+        m % Number of grid points.
+        h % Step size
+    end
+
+    methods
+        function obj = D1Upwind(m,h,order)
+
+            switch order
+                case 2
+                    [H, HI, Dp, Dm, e_1, e_m] = sbp.upwind2(m,h);
+                case 3
+                    [H, HI, Dp, Dm, e_1, e_m] = sbp.upwind3(m,h);
+                case 4
+                    [H, HI, Dp, Dm, e_1, e_m] = sbp.upwind4(m,h);
+                case 5
+                    [H, HI, Dp, Dm, e_1, e_m] = sbp.upwind5(m,h);
+                case 6
+                    [H, HI, Dp, Dm, e_1, e_m] = sbp.upwind6(m,h);
+                case 7
+                    [H, HI, Dp, Dm, e_1, e_m] = sbp.upwind7(m,h);
+                case 8
+                    [H, HI, Dp, Dm, e_1, e_m] = sbp.upwind8(m,h);
+                case 9
+                    [H, HI, Dp, Dm, e_1, e_m] = sbp.upwind9(m,h);
+                otherwise
+                    error('Invalid operator order %d.',order);
+            end
+
+            obj.h = h;
+            obj.m = m;
+
+            obj.norms.H = H;
+            obj.norms.HI = HI;
+
+            obj.boundary.e_1 = e_1;
+            obj.boundary.e_m = e_m;
+
+            obj.derivatives.Dp = Dp;
+            obj.derivatives.Dm = Dm;
+        end
+    end
+
+    methods (Static)
+        function lambda = smallestGrid(obj)
+            error('Not implmented')
+        end
+    end
+end
+
+
+
+
+
diff -r 6a5e94bb5e13 -r 07fa0d6a05bb +sbp/D1_10th_10BP_5shifts.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/D1_10th_10BP_5shifts.m	Wed Sep 07 13:40:41 2016 +0200
@@ -0,0 +1,248 @@
+function [D1,H,x,h] = D1_10th_10BP_5shifts(N,L)
+
+% L: Domain length
+% N: Number of grid points
+if(nargin < 2)
+    L = 1;
+end
+
+% BP: Number of boundary points
+% m:  Number of nonequidistant spacings
+% order: Accuracy of interior stencil
+BP = 10;
+m = 5;
+order = 10;
+
+%%%% Non-equidistant grid points %%%%%
+x0 =  0.0000000000000e+00;
+x1 =  3.5902433622052e-01;
+x2 =  1.1436659188355e+00;
+x3 =  2.2144895894456e+00;
+x4 =  3.3682742337736e+00;
+x5 =  4.4309689056870e+00;
+x6 =  5.4309689056870e+00;
+x7 =  6.4309689056870e+00;
+x8 =  7.4309689056870e+00;
+x9 =  8.4309689056870e+00;
+x10 =  9.4309689056870e+00;
+
+xb = zeros(m+1,1);
+for i = 0:m
+    xb(i+1) = eval(['x' num2str(i)]);
+end
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Compute h %%%%%%%%%%
+h = L/(2*xb(end) + N-1-2*m);
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Define grid %%%%%%%%
+x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ];
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Norm matrix %%%%%%%%
+P = zeros(BP,1);
+%#ok<*NASGU>
+P0 =  1.0000000000000e-01;
+P1 =  5.8980851260667e-01;
+P2 =  9.5666820955973e-01;
+P3 =  1.1500297411596e+00;
+P4 =  1.1232986993248e+00;
+P5 =  1.0123020150951e+00;
+P6 =  9.9877122702527e-01;
+P7 =  1.0000873322761e+00;
+P8 =  1.0000045540888e+00;
+P9 =  9.9999861455083e-01;
+
+for i = 0:BP-1
+    P(i+1) = eval(['P' num2str(i)]);
+end
+
+H = ones(N,1);
+H(1:BP) = P;
+H(end-BP+1:end) = flip(P);
+H = spdiags(h*H,0,N,N);
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Q matrix %%%%%%%%%%%
+
+% interior stencil
+switch order
+    case 2
+        d = [-1/2,0,1/2];
+    case 4
+        d = [1/12,-2/3,0,2/3,-1/12];
+    case 6
+        d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60];
+    case 8
+        d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280];
+    case 10
+        d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260];
+    case 12
+        d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544];
+end
+d = repmat(d,N,1);
+Q = spdiags(d,-order/2:order/2,N,N);
+
+% Boundaries
+Q0_0 = -5.0000000000000e-01;
+Q0_1 =  6.7548747038002e-01;
+Q0_2 = -2.6691978151546e-01;
+Q0_3 =  1.4438714982130e-01;
+Q0_4 = -7.7273673750760e-02;
+Q0_5 =  2.5570078343005e-02;
+Q0_6 =  4.2808774693299e-03;
+Q0_7 = -8.2902108933389e-03;
+Q0_8 =  3.2031176427908e-03;
+Q0_9 = -4.4502749689556e-04;
+Q0_10 =  0.0000000000000e+00;
+Q0_11 =  0.0000000000000e+00;
+Q0_12 =  0.0000000000000e+00;
+Q0_13 =  0.0000000000000e+00;
+Q0_14 =  0.0000000000000e+00;
+Q1_0 = -6.7548747038002e-01;
+Q1_1 =  0.0000000000000e+00;
+Q1_2 =  9.5146052715180e-01;
+Q1_3 = -4.2442349882626e-01;
+Q1_4 =  2.1538865145190e-01;
+Q1_5 = -7.1939778160350e-02;
+Q1_6 = -8.2539187832840e-03;
+Q1_7 =  1.9930661669090e-02;
+Q1_8 = -7.7433256989613e-03;
+Q1_9 =  1.0681515760869e-03;
+Q1_10 =  0.0000000000000e+00;
+Q1_11 =  0.0000000000000e+00;
+Q1_12 =  0.0000000000000e+00;
+Q1_13 =  0.0000000000000e+00;
+Q1_14 =  0.0000000000000e+00;
+Q2_0 =  2.6691978151546e-01;
+Q2_1 = -9.5146052715180e-01;
+Q2_2 =  0.0000000000000e+00;
+Q2_3 =  9.6073770842387e-01;
+Q2_4 = -3.9378595264609e-01;
+Q2_5 =  1.3302097358959e-01;
+Q2_6 =  8.1200458151489e-05;
+Q2_7 = -2.3849770528789e-02;
+Q2_8 =  9.6600442856829e-03;
+Q2_9 = -1.3234579460680e-03;
+Q2_10 =  0.0000000000000e+00;
+Q2_11 =  0.0000000000000e+00;
+Q2_12 =  0.0000000000000e+00;
+Q2_13 =  0.0000000000000e+00;
+Q2_14 =  0.0000000000000e+00;
+Q3_0 = -1.4438714982130e-01;
+Q3_1 =  4.2442349882626e-01;
+Q3_2 = -9.6073770842387e-01;
+Q3_3 =  0.0000000000000e+00;
+Q3_4 =  9.1551097634196e-01;
+Q3_5 = -2.8541713079648e-01;
+Q3_6 =  4.1398809121293e-02;
+Q3_7 =  1.7256059167927e-02;
+Q3_8 = -9.4349194803610e-03;
+Q3_9 =  1.3875650645663e-03;
+Q3_10 =  0.0000000000000e+00;
+Q3_11 =  0.0000000000000e+00;
+Q3_12 =  0.0000000000000e+00;
+Q3_13 =  0.0000000000000e+00;
+Q3_14 =  0.0000000000000e+00;
+Q4_0 =  7.7273673750760e-02;
+Q4_1 = -2.1538865145190e-01;
+Q4_2 =  3.9378595264609e-01;
+Q4_3 = -9.1551097634196e-01;
+Q4_4 =  0.0000000000000e+00;
+Q4_5 =  8.3519401865051e-01;
+Q4_6 = -2.0586492924974e-01;
+Q4_7 =  3.1230261235901e-02;
+Q4_8 = -2.0969453466651e-04;
+Q4_9 = -5.0965470499782e-04;
+Q4_10 =  0.0000000000000e+00;
+Q4_11 =  0.0000000000000e+00;
+Q4_12 =  0.0000000000000e+00;
+Q4_13 =  0.0000000000000e+00;
+Q4_14 =  0.0000000000000e+00;
+Q5_0 = -2.5570078343005e-02;
+Q5_1 =  7.1939778160350e-02;
+Q5_2 = -1.3302097358959e-01;
+Q5_3 =  2.8541713079648e-01;
+Q5_4 = -8.3519401865051e-01;
+Q5_5 =  0.0000000000000e+00;
+Q5_6 =  8.1046389580138e-01;
+Q5_7 = -2.1879194972141e-01;
+Q5_8 =  5.2977237804899e-02;
+Q5_9 = -9.0146730522360e-03;
+Q5_10 =  7.9365079365079e-04;
+Q5_11 =  0.0000000000000e+00;
+Q5_12 =  0.0000000000000e+00;
+Q5_13 =  0.0000000000000e+00;
+Q5_14 =  0.0000000000000e+00;
+Q6_0 = -4.2808774693299e-03;
+Q6_1 =  8.2539187832840e-03;
+Q6_2 = -8.1200458151489e-05;
+Q6_3 = -4.1398809121293e-02;
+Q6_4 =  2.0586492924974e-01;
+Q6_5 = -8.1046389580138e-01;
+Q6_6 =  0.0000000000000e+00;
+Q6_7 =  8.2787884456005e-01;
+Q6_8 = -2.3582460382545e-01;
+Q6_9 =  5.9178678209520e-02;
+Q6_10 = -9.9206349206349e-03;
+Q6_11 =  7.9365079365079e-04;
+Q6_12 =  0.0000000000000e+00;
+Q6_13 =  0.0000000000000e+00;
+Q6_14 =  0.0000000000000e+00;
+Q7_0 =  8.2902108933389e-03;
+Q7_1 = -1.9930661669090e-02;
+Q7_2 =  2.3849770528789e-02;
+Q7_3 = -1.7256059167927e-02;
+Q7_4 = -3.1230261235901e-02;
+Q7_5 =  2.1879194972141e-01;
+Q7_6 = -8.2787884456005e-01;
+Q7_7 =  0.0000000000000e+00;
+Q7_8 =  8.3301028859275e-01;
+Q7_9 = -2.3804321850015e-01;
+Q7_10 =  5.9523809523809e-02;
+Q7_11 = -9.9206349206349e-03;
+Q7_12 =  7.9365079365079e-04;
+Q7_13 =  0.0000000000000e+00;
+Q7_14 =  0.0000000000000e+00;
+Q8_0 = -3.2031176427908e-03;
+Q8_1 =  7.7433256989613e-03;
+Q8_2 = -9.6600442856829e-03;
+Q8_3 =  9.4349194803610e-03;
+Q8_4 =  2.0969453466651e-04;
+Q8_5 = -5.2977237804899e-02;
+Q8_6 =  2.3582460382545e-01;
+Q8_7 = -8.3301028859275e-01;
+Q8_8 =  0.0000000000000e+00;
+Q8_9 =  8.3333655748509e-01;
+Q8_10 = -2.3809523809524e-01;
+Q8_11 =  5.9523809523809e-02;
+Q8_12 = -9.9206349206349e-03;
+Q8_13 =  7.9365079365079e-04;
+Q8_14 =  0.0000000000000e+00;
+Q9_0 =  4.4502749689556e-04;
+Q9_1 = -1.0681515760869e-03;
+Q9_2 =  1.3234579460680e-03;
+Q9_3 = -1.3875650645663e-03;
+Q9_4 =  5.0965470499782e-04;
+Q9_5 =  9.0146730522360e-03;
+Q9_6 = -5.9178678209520e-02;
+Q9_7 =  2.3804321850015e-01;
+Q9_8 = -8.3333655748509e-01;
+Q9_9 =  0.0000000000000e+00;
+Q9_10 =  8.3333333333333e-01;
+Q9_11 = -2.3809523809524e-01;
+Q9_12 =  5.9523809523809e-02;
+Q9_13 = -9.9206349206349e-03;
+Q9_14 =  7.9365079365079e-04;
+for i = 1:BP
+    for j = 1:BP
+        Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]);
+        Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]);
+    end
+end
+%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Difference operator %%
+D1 = H\Q;
+%%%%%%%%%%%%%%%%%%%%%%%%%%%
\ No newline at end of file
diff -r 6a5e94bb5e13 -r 07fa0d6a05bb +sbp/D1_12th_12BP_6shifts.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/D1_12th_12BP_6shifts.m	Wed Sep 07 13:40:41 2016 +0200
@@ -0,0 +1,354 @@
+function [D1,H,x,h] = D1_12th_12BP_6shifts(N,L)
+
+% L: Domain length
+% N: Number of grid points
+if(nargin < 2)
+    L = 1;
+end
+
+% BP: Number of boundary points
+% m:  Number of nonequidistant spacings
+% order: Accuracy of interior stencil
+BP = 12;
+m = 6;
+order = 12;
+
+%%%% Non-equidistant grid points %%%%%
+x0 =  0.0000000000000e+00;
+x1 =  3.6098032343909e-01;
+x2 =  1.1634317168086e+00;
+x3 =  2.2975905356987e+00;
+x4 =  3.6057529790929e+00;
+x5 =  4.8918275675510e+00;
+x6 =  6.0000000000000e+00;
+x7 =  7.0000000000000e+00;
+x8 =  8.0000000000000e+00;
+x9 =  9.0000000000000e+00;
+x10 =  1.0000000000000e+01;
+x11 =  1.1000000000000e+01;
+x12 =  1.2000000000000e+01;
+
+xb = zeros(m+1,1);
+for i = 0:m
+    xb(i+1) = eval(['x' num2str(i)]);
+end
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Compute h %%%%%%%%%%
+h = L/(2*xb(end) + N-1-2*m);
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Define grid %%%%%%%%
+x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ];
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Norm matrix %%%%%%%%
+P = zeros(BP,1);
+%#ok<*NASGU>
+P0 =  1.0000000000011e-01;
+P1 =  5.9616216757547e-01;
+P2 =  9.9065699844442e-01;
+P3 =  1.2512548713913e+00;
+P4 =  1.3316678989403e+00;
+P5 =  1.2093375037721e+00;
+P6 =  1.0236491595704e+00;
+P7 =  9.9685258909811e-01;
+P8 =  1.0004766563923e+00;
+P9 =  9.9993617879146e-01;
+P10 =  1.0000063122914e+00;
+P11 =  9.9999966373260e-01;
+
+for i = 0:BP-1
+    P(i+1) = eval(['P' num2str(i)]);
+end
+
+H = ones(N,1);
+H(1:BP) = P;
+H(end-BP+1:end) = flip(P);
+H = spdiags(h*H,0,N,N);
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Q matrix %%%%%%%%%%%
+
+% interior stencil
+switch order
+    case 2
+        d = [-1/2,0,1/2];
+    case 4
+        d = [1/12,-2/3,0,2/3,-1/12];
+    case 6
+        d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60];
+    case 8
+        d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280];
+    case 10
+        d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260];
+    case 12
+        d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544];
+end
+d = repmat(d,N,1);
+Q = spdiags(d,-order/2:order/2,N,N);
+
+% Boundaries
+Q0_0 = -5.0000000000000e-01;
+Q0_1 =  6.7597560728423e-01;
+Q0_2 = -2.6859785384416e-01;
+Q0_3 =  1.4850302678903e-01;
+Q0_4 = -8.7976689586154e-02;
+Q0_5 =  4.1833336322613e-02;
+Q0_6 = -2.2216684976993e-03;
+Q0_7 = -1.5910034062022e-02;
+Q0_8 =  1.1296706376589e-02;
+Q0_9 = -3.1823678285130e-03;
+Q0_10 =  2.4843594063649e-04;
+Q0_11 =  3.1501105449828e-05;
+Q0_12 =  0.0000000000000e+00;
+Q0_13 =  0.0000000000000e+00;
+Q0_14 =  0.0000000000000e+00;
+Q0_15 =  0.0000000000000e+00;
+Q0_16 =  0.0000000000000e+00;
+Q0_17 =  0.0000000000000e+00;
+Q1_0 = -6.7597560728423e-01;
+Q1_1 =  0.0000000000000e+00;
+Q1_2 =  9.5424013647146e-01;
+Q1_3 = -4.3389334603464e-01;
+Q1_4 =  2.4285669347653e-01;
+Q1_5 = -1.1443465137214e-01;
+Q1_6 =  8.5942765682435e-03;
+Q1_7 =  4.0290424215772e-02;
+Q1_8 = -2.9396383714543e-02;
+Q1_9 =  8.5601827834256e-03;
+Q1_10 = -7.8128092862319e-04;
+Q1_11 = -6.0444181254875e-05;
+Q1_12 =  0.0000000000000e+00;
+Q1_13 =  0.0000000000000e+00;
+Q1_14 =  0.0000000000000e+00;
+Q1_15 =  0.0000000000000e+00;
+Q1_16 =  0.0000000000000e+00;
+Q1_17 =  0.0000000000000e+00;
+Q2_0 =  2.6859785384416e-01;
+Q2_1 = -9.5424013647146e-01;
+Q2_2 =  0.0000000000000e+00;
+Q2_3 =  9.7065114311923e-01;
+Q2_4 = -4.3205328628292e-01;
+Q2_5 =  1.9549970932735e-01;
+Q2_6 = -2.4406885385172e-02;
+Q2_7 = -5.5737279079895e-02;
+Q2_8 =  4.3772338637753e-02;
+Q2_9 = -1.3727655130726e-02;
+Q2_10 =  1.6271304373071e-03;
+Q2_11 =  1.7066984372933e-05;
+Q2_12 =  0.0000000000000e+00;
+Q2_13 =  0.0000000000000e+00;
+Q2_14 =  0.0000000000000e+00;
+Q2_15 =  0.0000000000000e+00;
+Q2_16 =  0.0000000000000e+00;
+Q2_17 =  0.0000000000000e+00;
+Q3_0 = -1.4850302678903e-01;
+Q3_1 =  4.3389334603464e-01;
+Q3_2 = -9.7065114311923e-01;
+Q3_3 =  0.0000000000000e+00;
+Q3_4 =  9.5375878629204e-01;
+Q3_5 = -3.6113954384951e-01;
+Q3_6 =  6.9749289223875e-02;
+Q3_7 =  6.5161366516465e-02;
+Q3_8 = -6.0325702283960e-02;
+Q3_9 =  2.1188913621662e-02;
+Q3_10 = -3.2632650250470e-03;
+Q3_11 =  1.3097937809499e-04;
+Q3_12 =  0.0000000000000e+00;
+Q3_13 =  0.0000000000000e+00;
+Q3_14 =  0.0000000000000e+00;
+Q3_15 =  0.0000000000000e+00;
+Q3_16 =  0.0000000000000e+00;
+Q3_17 =  0.0000000000000e+00;
+Q4_0 =  8.7976689586154e-02;
+Q4_1 = -2.4285669347653e-01;
+Q4_2 =  4.3205328628292e-01;
+Q4_3 = -9.5375878629204e-01;
+Q4_4 =  0.0000000000000e+00;
+Q4_5 =  8.8676146394834e-01;
+Q4_6 = -2.1292503103800e-01;
+Q4_7 = -4.6037018833218e-02;
+Q4_8 =  7.4338719466734e-02;
+Q4_9 = -3.1217656663809e-02;
+Q4_10 =  6.1239492854797e-03;
+Q4_11 = -4.5892226603067e-04;
+Q4_12 =  0.0000000000000e+00;
+Q4_13 =  0.0000000000000e+00;
+Q4_14 =  0.0000000000000e+00;
+Q4_15 =  0.0000000000000e+00;
+Q4_16 =  0.0000000000000e+00;
+Q4_17 =  0.0000000000000e+00;
+Q5_0 = -4.1833336322613e-02;
+Q5_1 =  1.1443465137214e-01;
+Q5_2 = -1.9549970932735e-01;
+Q5_3 =  3.6113954384951e-01;
+Q5_4 = -8.8676146394834e-01;
+Q5_5 =  0.0000000000000e+00;
+Q5_6 =  7.7461223007026e-01;
+Q5_7 = -1.0609547334165e-01;
+Q5_8 = -4.4853791547749e-02;
+Q5_9 =  3.2436468405486e-02;
+Q5_10 = -8.4387621360184e-03;
+Q5_11 =  8.5964292632428e-04;
+Q5_12 =  0.0000000000000e+00;
+Q5_13 =  0.0000000000000e+00;
+Q5_14 =  0.0000000000000e+00;
+Q5_15 =  0.0000000000000e+00;
+Q5_16 =  0.0000000000000e+00;
+Q5_17 =  0.0000000000000e+00;
+Q6_0 =  2.2216684976993e-03;
+Q6_1 = -8.5942765682435e-03;
+Q6_2 =  2.4406885385172e-02;
+Q6_3 = -6.9749289223875e-02;
+Q6_4 =  2.1292503103800e-01;
+Q6_5 = -7.7461223007026e-01;
+Q6_6 =  0.0000000000000e+00;
+Q6_7 =  7.4758103262966e-01;
+Q6_8 = -1.5730779067906e-01;
+Q6_9 =  2.6517620342970e-02;
+Q6_10 = -4.3175367549700e-03;
+Q6_11 =  1.1092605832824e-03;
+Q6_12 = -1.8037518037522e-04;
+Q6_13 =  0.0000000000000e+00;
+Q6_14 =  0.0000000000000e+00;
+Q6_15 =  0.0000000000000e+00;
+Q6_16 =  0.0000000000000e+00;
+Q6_17 =  0.0000000000000e+00;
+Q7_0 =  1.5910034062022e-02;
+Q7_1 = -4.0290424215772e-02;
+Q7_2 =  5.5737279079895e-02;
+Q7_3 = -6.5161366516465e-02;
+Q7_4 =  4.6037018833218e-02;
+Q7_5 =  1.0609547334165e-01;
+Q7_6 = -7.4758103262966e-01;
+Q7_7 =  0.0000000000000e+00;
+Q7_8 =  8.0975719267918e-01;
+Q7_9 = -2.3568822398349e-01;
+Q7_10 =  6.9373143801571e-02;
+Q7_11 = -1.6606121869177e-02;
+Q7_12 =  2.5974025974031e-03;
+Q7_13 = -1.8037518037522e-04;
+Q7_14 =  0.0000000000000e+00;
+Q7_15 =  0.0000000000000e+00;
+Q7_16 =  0.0000000000000e+00;
+Q7_17 =  0.0000000000000e+00;
+Q8_0 = -1.1296706376589e-02;
+Q8_1 =  2.9396383714543e-02;
+Q8_2 = -4.3772338637753e-02;
+Q8_3 =  6.0325702283960e-02;
+Q8_4 = -7.4338719466734e-02;
+Q8_5 =  4.4853791547749e-02;
+Q8_6 =  1.5730779067906e-01;
+Q8_7 = -8.0975719267918e-01;
+Q8_8 =  0.0000000000000e+00;
+Q8_9 =  8.4765775072084e-01;
+Q8_10 = -2.6369594097148e-01;
+Q8_11 =  7.8759594625702e-02;
+Q8_12 = -1.7857142857146e-02;
+Q8_13 =  2.5974025974031e-03;
+Q8_14 = -1.8037518037522e-04;
+Q8_15 =  0.0000000000000e+00;
+Q8_16 =  0.0000000000000e+00;
+Q8_17 =  0.0000000000000e+00;
+Q9_0 =  3.1823678285130e-03;
+Q9_1 = -8.5601827834256e-03;
+Q9_2 =  1.3727655130726e-02;
+Q9_3 = -2.1188913621662e-02;
+Q9_4 =  3.1217656663809e-02;
+Q9_5 = -3.2436468405486e-02;
+Q9_6 = -2.6517620342970e-02;
+Q9_7 =  2.3568822398349e-01;
+Q9_8 = -8.4765775072084e-01;
+Q9_9 =  0.0000000000000e+00;
+Q9_10 =  8.5631774953989e-01;
+Q9_11 = -2.6769768119702e-01;
+Q9_12 =  7.9365079365093e-02;
+Q9_13 = -1.7857142857146e-02;
+Q9_14 =  2.5974025974031e-03;
+Q9_15 = -1.8037518037522e-04;
+Q9_16 =  0.0000000000000e+00;
+Q9_17 =  0.0000000000000e+00;
+Q10_0 = -2.4843594063649e-04;
+Q10_0 = -2.4843594063649e-04;;
+Q10_1 =  7.8128092862319e-04;
+Q10_1 =  7.8128092862319e-04;;
+Q10_2 = -1.6271304373071e-03;
+Q10_2 = -1.6271304373071e-03;;
+Q10_3 =  3.2632650250470e-03;
+Q10_3 =  3.2632650250470e-03;;
+Q10_4 = -6.1239492854797e-03;
+Q10_4 = -6.1239492854797e-03;;
+Q10_5 =  8.4387621360184e-03;
+Q10_5 =  8.4387621360184e-03;;
+Q10_6 =  4.3175367549700e-03;
+Q10_6 =  4.3175367549700e-03;;
+Q10_7 = -6.9373143801571e-02;
+Q10_7 = -6.9373143801571e-02;;
+Q10_8 =  2.6369594097148e-01;
+Q10_8 =  2.6369594097148e-01;;
+Q10_9 = -8.5631774953989e-01;
+Q10_9 = -8.5631774953989e-01;;
+Q10_10 =  0.0000000000000e+00;
+Q10_10 =  0.0000000000000e+00;;
+Q10_11 =  8.5712580212095e-01;
+Q10_11 =  8.5712580212095e-01;;
+Q10_12 = -2.6785714285718e-01;
+Q10_12 = -2.6785714285718e-01;;
+Q10_13 =  7.9365079365093e-02;
+Q10_13 =  7.9365079365093e-02;;
+Q10_14 = -1.7857142857146e-02;
+Q10_14 = -1.7857142857146e-02;;
+Q10_15 =  2.5974025974031e-03;
+Q10_15 =  2.5974025974031e-03;;
+Q10_16 = -1.8037518037522e-04;
+Q10_16 = -1.8037518037522e-04;;
+Q10_17 =  0.0000000000000e+00;
+Q10_17 =  0.0000000000000e+00;;
+Q11_0 = -3.1501105449828e-05;
+Q11_0 = -3.1501105449828e-05;;
+Q11_1 =  6.0444181254875e-05;
+Q11_1 =  6.0444181254875e-05;;
+Q11_2 = -1.7066984372933e-05;
+Q11_2 = -1.7066984372933e-05;;
+Q11_3 = -1.3097937809499e-04;
+Q11_3 = -1.3097937809499e-04;;
+Q11_4 =  4.5892226603067e-04;
+Q11_4 =  4.5892226603067e-04;;
+Q11_5 = -8.5964292632428e-04;
+Q11_5 = -8.5964292632428e-04;;
+Q11_6 = -1.1092605832824e-03;
+Q11_6 = -1.1092605832824e-03;;
+Q11_7 =  1.6606121869177e-02;
+Q11_7 =  1.6606121869177e-02;;
+Q11_8 = -7.8759594625702e-02;
+Q11_8 = -7.8759594625702e-02;;
+Q11_9 =  2.6769768119702e-01;
+Q11_9 =  2.6769768119702e-01;;
+Q11_10 = -8.5712580212095e-01;
+Q11_10 = -8.5712580212095e-01;;
+Q11_11 =  0.0000000000000e+00;
+Q11_11 =  0.0000000000000e+00;;
+Q11_12 =  8.5714285714289e-01;
+Q11_12 =  8.5714285714289e-01;;
+Q11_13 = -2.6785714285718e-01;
+Q11_13 = -2.6785714285718e-01;;
+Q11_14 =  7.9365079365093e-02;
+Q11_14 =  7.9365079365093e-02;;
+Q11_15 = -1.7857142857146e-02;
+Q11_15 = -1.7857142857146e-02;;
+Q11_16 =  2.5974025974031e-03;
+Q11_16 =  2.5974025974031e-03;;
+Q11_17 = -1.8037518037522e-04;
+Q11_17 = -1.8037518037522e-04;;
+for i = 1:BP
+    for j = 1:BP
+        Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]);
+        Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]);
+    end
+end
+%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Difference operator %%
+D1 = H\Q;
+%%%%%%%%%%%%%%%%%%%%%%%%%%%
\ No newline at end of file
diff -r 6a5e94bb5e13 -r 07fa0d6a05bb +sbp/D1_4th_4BP_2shifts.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/D1_4th_4BP_2shifts.m	Wed Sep 07 13:40:41 2016 +0200
@@ -0,0 +1,110 @@
+function [D1,H,x,h] = D1_4th_4BP_2shifts(N,L)
+
+% L: Domain length
+% N: Number of grid points
+if(nargin < 2)
+    L = 1;
+end
+
+% BP: Number of boundary points
+% m:  Number of nonequidistant spacings
+% order: Accuracy of interior stencil
+BP = 4;
+m = 2;
+order = 4;
+
+%%%% Non-equidistant grid points %%%%%
+x0 =  0.0000000000000e+00;
+x1 =  6.8764546205559e-01;
+x2 =  1.8022115125776e+00;
+x3 =  2.8022115125776e+00;
+x4 =  3.8022115125776e+00;
+
+xb = zeros(m+1,1);
+for i = 0:m
+    xb(i+1) = eval(['x' num2str(i)]);
+end
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Compute h %%%%%%%%%%
+h = L/(2*xb(end) + N-1-2*m);
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Define grid %%%%%%%%
+x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ];
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Norm matrix %%%%%%%%
+P = zeros(BP,1);
+%#ok<*NASGU>
+P0 =  2.1259737557798e-01;
+P1 =  1.0260290400758e+00;
+P2 =  1.0775123588954e+00;
+P3 =  9.8607273802835e-01;
+
+for i = 0:BP-1
+    P(i+1) = eval(['P' num2str(i)]);
+end
+
+H = ones(N,1);
+H(1:BP) = P;
+H(end-BP+1:end) = flip(P);
+H = spdiags(h*H,0,N,N);
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Q matrix %%%%%%%%%%%
+
+% interior stencil
+switch order
+    case 2
+        d = [-1/2,0,1/2];
+    case 4
+        d = [1/12,-2/3,0,2/3,-1/12];
+    case 6
+        d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60];
+    case 8
+        d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280];
+    case 10
+        d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260];
+    case 12
+        d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544];
+end
+d = repmat(d,N,1);
+Q = spdiags(d,-order/2:order/2,N,N);
+
+% Boundaries
+Q0_0 = -5.0000000000000e-01;
+Q0_1 =  6.5605279837843e-01;
+Q0_2 = -1.9875859409017e-01;
+Q0_3 =  4.2705795711740e-02;
+Q0_4 =  0.0000000000000e+00;
+Q0_5 =  0.0000000000000e+00;
+Q1_0 = -6.5605279837843e-01;
+Q1_1 =  0.0000000000000e+00;
+Q1_2 =  8.1236966439895e-01;
+Q1_3 = -1.5631686602052e-01;
+Q1_4 =  0.0000000000000e+00;
+Q1_5 =  0.0000000000000e+00;
+Q2_0 =  1.9875859409017e-01;
+Q2_1 = -8.1236966439895e-01;
+Q2_2 =  0.0000000000000e+00;
+Q2_3 =  6.9694440364211e-01;
+Q2_4 = -8.3333333333333e-02;
+Q2_5 =  0.0000000000000e+00;
+Q3_0 = -4.2705795711740e-02;
+Q3_1 =  1.5631686602052e-01;
+Q3_2 = -6.9694440364211e-01;
+Q3_3 =  0.0000000000000e+00;
+Q3_4 =  6.6666666666667e-01;
+Q3_5 = -8.3333333333333e-02;
+for i = 1:BP
+    for j = 1:BP
+        Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]);
+        Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]);
+    end
+end
+%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Difference operator %%
+D1 = H\Q;
+%%%%%%%%%%%%%%%%%%%%%%%%%%%
\ No newline at end of file
diff -r 6a5e94bb5e13 -r 07fa0d6a05bb +sbp/D1_6th_6BP_3shifts.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/D1_6th_6BP_3shifts.m	Wed Sep 07 13:40:41 2016 +0200
@@ -0,0 +1,144 @@
+function [D1,H,x,h] = D1_6th_6BP_3shifts(N,L)
+
+% L: Domain length
+% N: Number of grid points
+if(nargin < 2)
+    L = 1;
+end
+
+% BP: Number of boundary points
+% m:  Number of nonequidistant spacings
+% order: Accuracy of interior stencil
+BP = 6;
+m = 3;
+order = 6;
+
+%%%% Non-equidistant grid points %%%%%
+x0 =  0.0000000000000e+00;
+x1 =  4.4090263368623e-01;
+x2 =  1.2855984345073e+00;
+x3 =  2.2638953951239e+00;
+x4 =  3.2638953951239e+00;
+x5 =  4.2638953951239e+00;
+x6 =  5.2638953951239e+00;
+
+xb = zeros(m+1,1);
+for i = 0:m
+    xb(i+1) = eval(['x' num2str(i)]);
+end
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Compute h %%%%%%%%%%
+h = L/(2*xb(end) + N-1-2*m);
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Define grid %%%%%%%%
+x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ];
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Norm matrix %%%%%%%%
+P = zeros(BP,1);
+%#ok<*NASGU>
+P0 =  1.3030223027124e-01;
+P1 =  6.8851501587715e-01;
+P2 =  9.5166202564389e-01;
+P3 =  9.9103890475697e-01;
+P4 =  1.0028757074552e+00;
+P5 =  9.9950151111941e-01;
+
+for i = 0:BP-1
+    P(i+1) = eval(['P' num2str(i)]);
+end
+
+H = ones(N,1);
+H(1:BP) = P;
+H(end-BP+1:end) = flip(P);
+H = spdiags(h*H,0,N,N);
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Q matrix %%%%%%%%%%%
+
+% interior stencil
+switch order
+    case 2
+        d = [-1/2,0,1/2];
+    case 4
+        d = [1/12,-2/3,0,2/3,-1/12];
+    case 6
+        d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60];
+    case 8
+        d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280];
+    case 10
+        d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260];
+    case 12
+        d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544];
+end
+d = repmat(d,N,1);
+Q = spdiags(d,-order/2:order/2,N,N);
+
+% Boundaries
+Q0_0 = -5.0000000000000e-01;
+Q0_1 =  6.6042071945824e-01;
+Q0_2 = -2.2104152954203e-01;
+Q0_3 =  7.6243679810093e-02;
+Q0_4 = -1.7298206716724e-02;
+Q0_5 =  1.6753369904210e-03;
+Q0_6 =  0.0000000000000e+00;
+Q0_7 =  0.0000000000000e+00;
+Q0_8 =  0.0000000000000e+00;
+Q1_0 = -6.6042071945824e-01;
+Q1_1 =  0.0000000000000e+00;
+Q1_2 =  8.7352798702787e-01;
+Q1_3 = -2.6581719253084e-01;
+Q1_4 =  5.7458484948314e-02;
+Q1_5 = -4.7485599871040e-03;
+Q1_6 =  0.0000000000000e+00;
+Q1_7 =  0.0000000000000e+00;
+Q1_8 =  0.0000000000000e+00;
+Q2_0 =  2.2104152954203e-01;
+Q2_1 = -8.7352798702787e-01;
+Q2_2 =  0.0000000000000e+00;
+Q2_3 =  8.1707122038457e-01;
+Q2_4 = -1.8881125503769e-01;
+Q2_5 =  2.4226492138960e-02;
+Q2_6 =  0.0000000000000e+00;
+Q2_7 =  0.0000000000000e+00;
+Q2_8 =  0.0000000000000e+00;
+Q3_0 = -7.6243679810093e-02;
+Q3_1 =  2.6581719253084e-01;
+Q3_2 = -8.1707122038457e-01;
+Q3_3 =  0.0000000000000e+00;
+Q3_4 =  7.6798636652679e-01;
+Q3_5 = -1.5715532552963e-01;
+Q3_6 =  1.6666666666667e-02;
+Q3_7 =  0.0000000000000e+00;
+Q3_8 =  0.0000000000000e+00;
+Q4_0 =  1.7298206716724e-02;
+Q4_1 = -5.7458484948314e-02;
+Q4_2 =  1.8881125503769e-01;
+Q4_3 = -7.6798636652679e-01;
+Q4_4 =  0.0000000000000e+00;
+Q4_5 =  7.5266872305402e-01;
+Q4_6 = -1.5000000000000e-01;
+Q4_7 =  1.6666666666667e-02;
+Q4_8 =  0.0000000000000e+00;
+Q5_0 = -1.6753369904210e-03;
+Q5_1 =  4.7485599871040e-03;
+Q5_2 = -2.4226492138960e-02;
+Q5_3 =  1.5715532552963e-01;
+Q5_4 = -7.5266872305402e-01;
+Q5_5 =  0.0000000000000e+00;
+Q5_6 =  7.5000000000000e-01;
+Q5_7 = -1.5000000000000e-01;
+Q5_8 =  1.6666666666667e-02;
+for i = 1:BP
+    for j = 1:BP
+        Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]);
+        Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]);
+    end
+end
+%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Difference operator %%
+D1 = H\Q;
+%%%%%%%%%%%%%%%%%%%%%%%%%%%
\ No newline at end of file
diff -r 6a5e94bb5e13 -r 07fa0d6a05bb +sbp/D1_8th_8BP_4shifts.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/D1_8th_8BP_4shifts.m	Wed Sep 07 13:40:41 2016 +0200
@@ -0,0 +1,190 @@
+function [D1,H,x,h] = D1_8th_8BP_4shifts(N,L)
+
+% L: Domain length
+% N: Number of grid points
+if(nargin < 2)
+    L = 1;
+end
+
+% BP: Number of boundary points
+% m:  Number of nonequidistant spacings
+% order: Accuracy of interior stencil
+BP = 8;
+m = 4;
+order = 8;
+
+%%%% Non-equidistant grid points %%%%%
+x0 =  0.0000000000000e+00;
+x1 =  3.8118550247622e-01;
+x2 =  1.1899550868338e+00;
+x3 =  2.2476300175641e+00;
+x4 =  3.3192851303204e+00;
+x5 =  4.3192851303204e+00;
+x6 =  5.3192851303204e+00;
+x7 =  6.3192851303204e+00;
+x8 =  7.3192851303204e+00;
+
+xb = zeros(m+1,1);
+for i = 0:m
+    xb(i+1) = eval(['x' num2str(i)]);
+end
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Compute h %%%%%%%%%%
+h = L/(2*xb(end) + N-1-2*m);
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Define grid %%%%%%%%
+x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ];
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Norm matrix %%%%%%%%
+P = zeros(BP,1);
+%#ok<*NASGU>
+P0 =  1.0758368078310e-01;
+P1 =  6.1909685107891e-01;
+P2 =  9.6971176519117e-01;
+P3 =  1.1023441350947e+00;
+P4 =  1.0244688965833e+00;
+P5 =  9.9533550116831e-01;
+P6 =  1.0008236941028e+00;
+P7 =  9.9992060631812e-01;
+
+for i = 0:BP-1
+    P(i+1) = eval(['P' num2str(i)]);
+end
+
+H = ones(N,1);
+H(1:BP) = P;
+H(end-BP+1:end) = flip(P);
+H = spdiags(h*H,0,N,N);
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Q matrix %%%%%%%%%%%
+
+% interior stencil
+switch order
+    case 2
+        d = [-1/2,0,1/2];
+    case 4
+        d = [1/12,-2/3,0,2/3,-1/12];
+    case 6
+        d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60];
+    case 8
+        d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280];
+    case 10
+        d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260];
+    case 12
+        d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544];
+end
+d = repmat(d,N,1);
+Q = spdiags(d,-order/2:order/2,N,N);
+
+% Boundaries
+Q0_0 = -5.0000000000000e-01;
+Q0_1 =  6.7284756079369e-01;
+Q0_2 = -2.5969732837062e-01;
+Q0_3 =  1.3519390385721e-01;
+Q0_4 = -6.9678474730984e-02;
+Q0_5 =  2.6434024071371e-02;
+Q0_6 = -5.5992311465618e-03;
+Q0_7 =  4.9954552590464e-04;
+Q0_8 =  0.0000000000000e+00;
+Q0_9 =  0.0000000000000e+00;
+Q0_10 =  0.0000000000000e+00;
+Q0_11 =  0.0000000000000e+00;
+Q1_0 = -6.7284756079369e-01;
+Q1_1 =  0.0000000000000e+00;
+Q1_2 =  9.4074021172233e-01;
+Q1_3 = -4.0511642426516e-01;
+Q1_4 =  1.9369192209331e-01;
+Q1_5 = -6.8638079843479e-02;
+Q1_6 =  1.3146457241484e-02;
+Q1_7 = -9.7652615479254e-04;
+Q1_8 =  0.0000000000000e+00;
+Q1_9 =  0.0000000000000e+00;
+Q1_10 =  0.0000000000000e+00;
+Q1_11 =  0.0000000000000e+00;
+Q2_0 =  2.5969732837062e-01;
+Q2_1 = -9.4074021172233e-01;
+Q2_2 =  0.0000000000000e+00;
+Q2_3 =  9.4316393361096e-01;
+Q2_4 = -3.5728039257451e-01;
+Q2_5 =  1.1266686855013e-01;
+Q2_6 = -1.8334941452280e-02;
+Q2_7 =  8.2741521740941e-04;
+Q2_8 =  0.0000000000000e+00;
+Q2_9 =  0.0000000000000e+00;
+Q2_10 =  0.0000000000000e+00;
+Q2_11 =  0.0000000000000e+00;
+Q3_0 = -1.3519390385721e-01;
+Q3_1 =  4.0511642426516e-01;
+Q3_2 = -9.4316393361096e-01;
+Q3_3 =  0.0000000000000e+00;
+Q3_4 =  8.7694387866575e-01;
+Q3_5 = -2.4698058719506e-01;
+Q3_6 =  4.7291642094198e-02;
+Q3_7 = -4.0135203618880e-03;
+Q3_8 =  0.0000000000000e+00;
+Q3_9 =  0.0000000000000e+00;
+Q3_10 =  0.0000000000000e+00;
+Q3_11 =  0.0000000000000e+00;
+Q4_0 =  6.9678474730984e-02;
+Q4_1 = -1.9369192209331e-01;
+Q4_2 =  3.5728039257451e-01;
+Q4_3 = -8.7694387866575e-01;
+Q4_4 =  0.0000000000000e+00;
+Q4_5 =  8.1123946853807e-01;
+Q4_6 = -2.0267150541446e-01;
+Q4_7 =  3.8680398901392e-02;
+Q4_8 = -3.5714285714286e-03;
+Q4_9 =  0.0000000000000e+00;
+Q4_10 =  0.0000000000000e+00;
+Q4_11 =  0.0000000000000e+00;
+Q5_0 = -2.6434024071371e-02;
+Q5_1 =  6.8638079843479e-02;
+Q5_2 = -1.1266686855013e-01;
+Q5_3 =  2.4698058719506e-01;
+Q5_4 = -8.1123946853807e-01;
+Q5_5 =  0.0000000000000e+00;
+Q5_6 =  8.0108544742793e-01;
+Q5_7 = -2.0088756283071e-01;
+Q5_8 =  3.8095238095238e-02;
+Q5_9 = -3.5714285714286e-03;
+Q5_10 =  0.0000000000000e+00;
+Q5_11 =  0.0000000000000e+00;
+Q6_0 =  5.5992311465618e-03;
+Q6_1 = -1.3146457241484e-02;
+Q6_2 =  1.8334941452280e-02;
+Q6_3 = -4.7291642094198e-02;
+Q6_4 =  2.0267150541446e-01;
+Q6_5 = -8.0108544742793e-01;
+Q6_6 =  0.0000000000000e+00;
+Q6_7 =  8.0039405922650e-01;
+Q6_8 = -2.0000000000000e-01;
+Q6_9 =  3.8095238095238e-02;
+Q6_10 = -3.5714285714286e-03;
+Q6_11 =  0.0000000000000e+00;
+Q7_0 = -4.9954552590464e-04;
+Q7_1 =  9.7652615479254e-04;
+Q7_2 = -8.2741521740941e-04;
+Q7_3 =  4.0135203618880e-03;
+Q7_4 = -3.8680398901392e-02;
+Q7_5 =  2.0088756283071e-01;
+Q7_6 = -8.0039405922650e-01;
+Q7_7 =  0.0000000000000e+00;
+Q7_8 =  8.0000000000000e-01;
+Q7_9 = -2.0000000000000e-01;
+Q7_10 =  3.8095238095238e-02;
+Q7_11 = -3.5714285714286e-03;
+for i = 1:BP
+    for j = 1:BP
+        Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]);
+        Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]);
+    end
+end
+%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Difference operator %%
+D1 = H\Q;
+%%%%%%%%%%%%%%%%%%%%%%%%%%%
\ No newline at end of file
diff -r 6a5e94bb5e13 -r 07fa0d6a05bb +sbp/D1_minimal_10th_8BP_3shifts.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/D1_minimal_10th_8BP_3shifts.m	Wed Sep 07 13:40:41 2016 +0200
@@ -0,0 +1,198 @@
+function [D1,H,x,h] = D1_minimal_10th_8BP_3shifts(N,L)
+
+% L: Domain length
+% N: Number of grid points
+if(nargin < 2)
+    L = 1;
+end
+
+% BP: Number of boundary points
+% m:  Number of nonequidistant spacings
+% order: Accuracy of interior stencil
+BP = 8;
+m = 3;
+order = 10;
+
+%%%% Non-equidistant grid points %%%%%
+x0 =  0.0000000000000e+00;
+x1 =  5.8556160757529e-01;
+x2 =  1.7473267488572e+00;
+x3 =  3.0000000000000e+00;
+x4 =  4.0000000000000e+00;
+x5 =  5.0000000000000e+00;
+x6 =  6.0000000000000e+00;
+x7 =  7.0000000000000e+00;
+x8 =  8.0000000000000e+00;
+
+xb = zeros(m+1,1);
+for i = 0:m
+    xb(i+1) = eval(['x' num2str(i)]);
+end
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Compute h %%%%%%%%%%
+h = L/(2*xb(end) + N-1-2*m);
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Define grid %%%%%%%%
+x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ];
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Norm matrix %%%%%%%%
+P = zeros(BP,1);
+%#ok<*NASGU>
+P0 =  1.6717213975289e-01;
+P1 =  9.3675739171278e-01;
+P2 =  1.3035532379753e+00;
+P3 =  1.1188461804303e+00;
+P4 =  9.6664345922660e-01;
+P5 =  1.0083235564392e+00;
+P6 =  9.9858767377362e-01;
+P7 =  1.0001163606893e+00;
+
+for i = 0:BP-1
+    P(i+1) = eval(['P' num2str(i)]);
+end
+
+H = ones(N,1);
+H(1:BP) = P;
+H(end-BP+1:end) = flip(P);
+H = spdiags(h*H,0,N,N);
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Q matrix %%%%%%%%%%%
+
+% interior stencil
+switch order
+    case 2
+        d = [-1/2,0,1/2];
+    case 4
+        d = [1/12,-2/3,0,2/3,-1/12];
+    case 6
+        d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60];
+    case 8
+        d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280];
+    case 10
+        d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260];
+    case 12
+        d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544];
+end
+d = repmat(d,N,1);
+Q = spdiags(d,-order/2:order/2,N,N);
+
+% Boundaries
+Q0_0 = -5.0000000000000e-01;
+Q0_1 =  6.7349296966214e-01;
+Q0_2 = -2.5186401896559e-01;
+Q0_3 =  8.3431385420901e-02;
+Q0_4 =  2.5480326895984e-02;
+Q0_5 = -4.5992420658252e-02;
+Q0_6 =  1.7526412909003e-02;
+Q0_7 = -2.0746552641799e-03;
+Q0_8 =  0.0000000000000e+00;
+Q0_9 =  0.0000000000000e+00;
+Q0_10 =  0.0000000000000e+00;
+Q0_11 =  0.0000000000000e+00;
+Q0_12 =  0.0000000000000e+00;
+Q1_0 = -6.7349296966214e-01;
+Q1_1 =  0.0000000000000e+00;
+Q1_2 =  9.1982892384044e-01;
+Q1_3 = -2.7262271754043e-01;
+Q1_4 = -5.0992113348238e-02;
+Q1_5 =  1.1814647281129e-01;
+Q1_6 = -4.6693123378079e-02;
+Q1_7 =  5.8255272771571e-03;
+Q1_8 =  0.0000000000000e+00;
+Q1_9 =  0.0000000000000e+00;
+Q1_10 =  0.0000000000000e+00;
+Q1_11 =  0.0000000000000e+00;
+Q1_12 =  0.0000000000000e+00;
+Q2_0 =  2.5186401896559e-01;
+Q2_1 = -9.1982892384044e-01;
+Q2_2 =  0.0000000000000e+00;
+Q2_3 =  7.8566746772741e-01;
+Q2_4 = -2.4097806629929e-02;
+Q2_5 = -1.5312168858669e-01;
+Q2_6 =  6.9451518963875e-02;
+Q2_7 = -9.9345865998262e-03;
+Q2_8 =  0.0000000000000e+00;
+Q2_9 =  0.0000000000000e+00;
+Q2_10 =  0.0000000000000e+00;
+Q2_11 =  0.0000000000000e+00;
+Q2_12 =  0.0000000000000e+00;
+Q3_0 = -8.3431385420901e-02;
+Q3_1 =  2.7262271754043e-01;
+Q3_2 = -7.8566746772741e-01;
+Q3_3 =  0.0000000000000e+00;
+Q3_4 =  6.2047871210535e-01;
+Q3_5 =  1.4776775176509e-02;
+Q3_6 = -4.6889652372990e-02;
+Q3_7 =  7.3166499053672e-03;
+Q3_8 =  7.9365079365079e-04;
+Q3_9 =  0.0000000000000e+00;
+Q3_10 =  0.0000000000000e+00;
+Q3_11 =  0.0000000000000e+00;
+Q3_12 =  0.0000000000000e+00;
+Q4_0 = -2.5480326895984e-02;
+Q4_1 =  5.0992113348238e-02;
+Q4_2 =  2.4097806629929e-02;
+Q4_3 = -6.2047871210535e-01;
+Q4_4 =  0.0000000000000e+00;
+Q4_5 =  6.9425006383507e-01;
+Q4_6 = -1.5686345740485e-01;
+Q4_7 =  4.2609496719925e-02;
+Q4_8 = -9.9206349206349e-03;
+Q4_9 =  7.9365079365079e-04;
+Q4_10 =  0.0000000000000e+00;
+Q4_11 =  0.0000000000000e+00;
+Q4_12 =  0.0000000000000e+00;
+Q5_0 =  4.5992420658252e-02;
+Q5_1 = -1.1814647281129e-01;
+Q5_2 =  1.5312168858669e-01;
+Q5_3 = -1.4776775176509e-02;
+Q5_4 = -6.9425006383507e-01;
+Q5_5 =  0.0000000000000e+00;
+Q5_6 =  8.0719535654891e-01;
+Q5_7 = -2.2953297936781e-01;
+Q5_8 =  5.9523809523809e-02;
+Q5_9 = -9.9206349206349e-03;
+Q5_10 =  7.9365079365079e-04;
+Q5_11 =  0.0000000000000e+00;
+Q5_12 =  0.0000000000000e+00;
+Q6_0 = -1.7526412909003e-02;
+Q6_1 =  4.6693123378079e-02;
+Q6_2 = -6.9451518963875e-02;
+Q6_3 =  4.6889652372990e-02;
+Q6_4 =  1.5686345740485e-01;
+Q6_5 = -8.0719535654891e-01;
+Q6_6 =  0.0000000000000e+00;
+Q6_7 =  8.3142546796428e-01;
+Q6_8 = -2.3809523809524e-01;
+Q6_9 =  5.9523809523809e-02;
+Q6_10 = -9.9206349206349e-03;
+Q6_11 =  7.9365079365079e-04;
+Q6_12 =  0.0000000000000e+00;
+Q7_0 =  2.0746552641799e-03;
+Q7_1 = -5.8255272771571e-03;
+Q7_2 =  9.9345865998262e-03;
+Q7_3 = -7.3166499053672e-03;
+Q7_4 = -4.2609496719925e-02;
+Q7_5 =  2.2953297936781e-01;
+Q7_6 = -8.3142546796428e-01;
+Q7_7 =  0.0000000000000e+00;
+Q7_8 =  8.3333333333333e-01;
+Q7_9 = -2.3809523809524e-01;
+Q7_10 =  5.9523809523809e-02;
+Q7_11 = -9.9206349206349e-03;
+Q7_12 =  7.9365079365079e-04;
+for i = 1:BP
+    for j = 1:BP
+        Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]);
+        Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]);
+    end
+end
+%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Difference operator %%
+D1 = H\Q;
+%%%%%%%%%%%%%%%%%%%%%%%%%%%
\ No newline at end of file
diff -r 6a5e94bb5e13 -r 07fa0d6a05bb +sbp/D1_minimal_12th_10BP_4shifts.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/D1_minimal_12th_10BP_4shifts.m	Wed Sep 07 13:40:41 2016 +0200
@@ -0,0 +1,258 @@
+function [D1,H,x,h] = D1_minimal_12th_10BP_4shifts(N,L)
+
+% L: Domain length
+% N: Number of grid points
+if(nargin < 2)
+    L = 1;
+end
+
+% BP: Number of boundary points
+% m:  Number of nonequidistant spacings
+% order: Accuracy of interior stencil
+BP = 10;
+m = 4;
+order = 12;
+
+%%%% Non-equidistant grid points %%%%%
+x0 =  0.0000000000000e+00;
+x1 =  4.6552112904489e-01;
+x2 =  1.4647984306493e+00;
+x3 =  2.7620429464763e+00;
+x4 =  4.0000000000000e+00;
+x5 =  5.0000000000000e+00;
+x6 =  6.0000000000000e+00;
+x7 =  7.0000000000000e+00;
+x8 =  8.0000000000000e+00;
+x9 =  9.0000000000000e+00;
+x10 =  1.0000000000000e+01;
+
+xb = zeros(m+1,1);
+for i = 0:m
+    xb(i+1) = eval(['x' num2str(i)]);
+end
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Compute h %%%%%%%%%%
+h = L/(2*xb(end) + N-1-2*m);
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Define grid %%%%%%%%
+x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ];
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Norm matrix %%%%%%%%
+P = zeros(BP,1);
+%#ok<*NASGU>
+P0 =  1.3013597111750e-01;
+P1 =  7.6146045079020e-01;
+P2 =  1.1984222247012e+00;
+P3 =  1.3340123109301e+00;
+P4 =  1.0951811473364e+00;
+P5 =  9.7569096377130e-01;
+P6 =  1.0061945410831e+00;
+P7 =  9.9874339446564e-01;
+P8 =  1.0001702615573e+00;
+P9 =  9.9998873424721e-01;
+
+for i = 0:BP-1
+    P(i+1) = eval(['P' num2str(i)]);
+end
+
+H = ones(N,1);
+H(1:BP) = P;
+H(end-BP+1:end) = flip(P);
+H = spdiags(h*H,0,N,N);
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Q matrix %%%%%%%%%%%
+
+% interior stencil
+switch order
+    case 2
+        d = [-1/2,0,1/2];
+    case 4
+        d = [1/12,-2/3,0,2/3,-1/12];
+    case 6
+        d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60];
+    case 8
+        d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280];
+    case 10
+        d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260];
+    case 12
+        d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544];
+end
+d = repmat(d,N,1);
+Q = spdiags(d,-order/2:order/2,N,N);
+
+% Boundaries
+Q0_0 = -5.0000000000000e-01;
+Q0_1 =  6.7603132599815e-01;
+Q0_2 = -2.6781065957921e-01;
+Q0_3 =  1.4050310470012e-01;
+Q0_4 = -5.4072653004710e-02;
+Q0_5 = -1.1876984028213e-02;
+Q0_6 =  2.6300694680362e-02;
+Q0_7 = -9.8077210531438e-03;
+Q0_8 =  4.2848959311712e-04;
+Q0_9 =  3.0440269352791e-04;
+Q0_10 =  0.0000000000000e+00;
+Q0_11 =  0.0000000000000e+00;
+Q0_12 =  0.0000000000000e+00;
+Q0_13 =  0.0000000000000e+00;
+Q0_14 =  0.0000000000000e+00;
+Q0_15 =  0.0000000000000e+00;
+Q1_0 = -6.7603132599815e-01;
+Q1_1 =  0.0000000000000e+00;
+Q1_2 =  9.5204118058043e-01;
+Q1_3 = -4.1306598236120e-01;
+Q1_4 =  1.5442577883533e-01;
+Q1_5 =  2.6535212157067e-02;
+Q1_6 = -6.7869317213141e-02;
+Q1_7 =  2.6431850942376e-02;
+Q1_8 = -1.8383496124689e-03;
+Q1_9 = -6.2904733024363e-04;
+Q1_10 =  0.0000000000000e+00;
+Q1_11 =  0.0000000000000e+00;
+Q1_12 =  0.0000000000000e+00;
+Q1_13 =  0.0000000000000e+00;
+Q1_14 =  0.0000000000000e+00;
+Q1_15 =  0.0000000000000e+00;
+Q2_0 =  2.6781065957921e-01;
+Q2_1 = -9.5204118058043e-01;
+Q2_2 =  0.0000000000000e+00;
+Q2_3 =  9.4424869445124e-01;
+Q2_4 = -3.0369922793820e-01;
+Q2_5 = -1.7036409572828e-02;
+Q2_6 =  9.7546158402857e-02;
+Q2_7 = -4.2534720340735e-02;
+Q2_8 =  5.3471186513813e-03;
+Q2_9 =  3.5890734751923e-04;
+Q2_10 =  0.0000000000000e+00;
+Q2_11 =  0.0000000000000e+00;
+Q2_12 =  0.0000000000000e+00;
+Q2_13 =  0.0000000000000e+00;
+Q2_14 =  0.0000000000000e+00;
+Q2_15 =  0.0000000000000e+00;
+Q3_0 = -1.4050310470012e-01;
+Q3_1 =  4.1306598236120e-01;
+Q3_2 = -9.4424869445124e-01;
+Q3_3 =  0.0000000000000e+00;
+Q3_4 =  8.1369662782755e-01;
+Q3_5 = -8.4027084126181e-02;
+Q3_6 = -1.0721180825279e-01;
+Q3_7 =  6.1098180874949e-02;
+Q3_8 = -1.2618762739267e-02;
+Q3_9 =  7.4866320589496e-04;
+Q3_10 =  0.0000000000000e+00;
+Q3_11 =  0.0000000000000e+00;
+Q3_12 =  0.0000000000000e+00;
+Q3_13 =  0.0000000000000e+00;
+Q3_14 =  0.0000000000000e+00;
+Q3_15 =  0.0000000000000e+00;
+Q4_0 =  5.4072653004710e-02;
+Q4_1 = -1.5442577883533e-01;
+Q4_2 =  3.0369922793820e-01;
+Q4_3 = -8.1369662782755e-01;
+Q4_4 =  0.0000000000000e+00;
+Q4_5 =  6.8140317057259e-01;
+Q4_6 = -5.0090848997730e-02;
+Q4_7 = -3.2156238350691e-02;
+Q4_8 =  1.2270208460707e-02;
+Q4_9 = -8.9539078453821e-04;
+Q4_10 = -1.8037518037522e-04;
+Q4_11 =  0.0000000000000e+00;
+Q4_12 =  0.0000000000000e+00;
+Q4_13 =  0.0000000000000e+00;
+Q4_14 =  0.0000000000000e+00;
+Q4_15 =  0.0000000000000e+00;
+Q5_0 =  1.1876984028213e-02;
+Q5_1 = -2.6535212157067e-02;
+Q5_2 =  1.7036409572828e-02;
+Q5_3 =  8.4027084126181e-02;
+Q5_4 = -6.8140317057259e-01;
+Q5_5 =  0.0000000000000e+00;
+Q5_6 =  7.3535220394540e-01;
+Q5_7 = -1.7565390898074e-01;
+Q5_8 =  4.5853976429252e-02;
+Q5_9 = -1.2971393808506e-02;
+Q5_10 =  2.5974025974031e-03;
+Q5_11 = -1.8037518037522e-04;
+Q5_12 =  0.0000000000000e+00;
+Q5_13 =  0.0000000000000e+00;
+Q5_14 =  0.0000000000000e+00;
+Q5_15 =  0.0000000000000e+00;
+Q6_0 = -2.6300694680362e-02;
+Q6_1 =  6.7869317213141e-02;
+Q6_2 = -9.7546158402857e-02;
+Q6_3 =  1.0721180825279e-01;
+Q6_4 =  5.0090848997730e-02;
+Q6_5 = -7.3535220394540e-01;
+Q6_6 =  0.0000000000000e+00;
+Q6_7 =  8.2185236816776e-01;
+Q6_8 = -2.4842386107781e-01;
+Q6_9 =  7.6038690915127e-02;
+Q6_10 = -1.7857142857146e-02;
+Q6_11 =  2.5974025974031e-03;
+Q6_12 = -1.8037518037522e-04;
+Q6_13 =  0.0000000000000e+00;
+Q6_14 =  0.0000000000000e+00;
+Q6_15 =  0.0000000000000e+00;
+Q7_0 =  9.8077210531438e-03;
+Q7_1 = -2.6431850942376e-02;
+Q7_2 =  4.2534720340735e-02;
+Q7_3 = -6.1098180874949e-02;
+Q7_4 =  3.2156238350691e-02;
+Q7_5 =  1.7565390898074e-01;
+Q7_6 = -8.2185236816776e-01;
+Q7_7 =  0.0000000000000e+00;
+Q7_8 =  8.5207110387533e-01;
+Q7_9 = -2.6676625654053e-01;
+Q7_10 =  7.9365079365093e-02;
+Q7_11 = -1.7857142857146e-02;
+Q7_12 =  2.5974025974031e-03;
+Q7_13 = -1.8037518037522e-04;
+Q7_14 =  0.0000000000000e+00;
+Q7_15 =  0.0000000000000e+00;
+Q8_0 = -4.2848959311712e-04;
+Q8_1 =  1.8383496124689e-03;
+Q8_2 = -5.3471186513813e-03;
+Q8_3 =  1.2618762739267e-02;
+Q8_4 = -1.2270208460707e-02;
+Q8_5 = -4.5853976429252e-02;
+Q8_6 =  2.4842386107781e-01;
+Q8_7 = -8.5207110387533e-01;
+Q8_8 =  0.0000000000000e+00;
+Q8_9 =  8.5702210251244e-01;
+Q8_10 = -2.6785714285718e-01;
+Q8_11 =  7.9365079365093e-02;
+Q8_12 = -1.7857142857146e-02;
+Q8_13 =  2.5974025974031e-03;
+Q8_14 = -1.8037518037522e-04;
+Q8_15 =  0.0000000000000e+00;
+Q9_0 = -3.0440269352791e-04;
+Q9_1 =  6.2904733024363e-04;
+Q9_2 = -3.5890734751923e-04;
+Q9_3 = -7.4866320589496e-04;
+Q9_4 =  8.9539078453821e-04;
+Q9_5 =  1.2971393808506e-02;
+Q9_6 = -7.6038690915127e-02;
+Q9_7 =  2.6676625654053e-01;
+Q9_8 = -8.5702210251244e-01;
+Q9_9 =  0.0000000000000e+00;
+Q9_10 =  8.5714285714289e-01;
+Q9_11 = -2.6785714285718e-01;
+Q9_12 =  7.9365079365093e-02;
+Q9_13 = -1.7857142857146e-02;
+Q9_14 =  2.5974025974031e-03;
+Q9_15 = -1.8037518037522e-04;
+for i = 1:BP
+    for j = 1:BP
+        Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]);
+        Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]);
+    end
+end
+%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Difference operator %%
+D1 = H\Q;
+%%%%%%%%%%%%%%%%%%%%%%%%%%%
\ No newline at end of file
diff -r 6a5e94bb5e13 -r 07fa0d6a05bb +sbp/D1_minimal_4th_3BP_1shifts.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/D1_minimal_4th_3BP_1shifts.m	Wed Sep 07 13:40:41 2016 +0200
@@ -0,0 +1,99 @@
+function [D1,H,x,h] = D1_minimal_4th_3BP_1shifts(N,L)
+
+% L: Domain length
+% N: Number of grid points
+if(nargin < 2)
+    L = 1;
+end
+
+% BP: Number of boundary points
+% m:  Number of nonequidistant spacings
+% order: Accuracy of interior stencil
+BP = 3;
+m = 1;
+order = 4;
+
+%%%% Non-equidistant grid points %%%%%
+x0 =  0.0000000000000e+00;
+x1 =  7.7122987842562e-01;
+x2 =  1.7712298784256e+00;
+x3 =  2.7712298784256e+00;
+
+xb = zeros(m+1,1);
+for i = 0:m
+    xb(i+1) = eval(['x' num2str(i)]);
+end
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Compute h %%%%%%%%%%
+h = L/(2*xb(end) + N-1-2*m);
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Define grid %%%%%%%%
+x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ];
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Norm matrix %%%%%%%%
+P = zeros(BP,1);
+%#ok<*NASGU>
+P0 =  2.6864248295847e-01;
+P1 =  1.0094667153500e+00;
+P2 =  9.9312068011715e-01;
+
+for i = 0:BP-1
+    P(i+1) = eval(['P' num2str(i)]);
+end
+
+H = ones(N,1);
+H(1:BP) = P;
+H(end-BP+1:end) = flip(P);
+H = spdiags(h*H,0,N,N);
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Q matrix %%%%%%%%%%%
+
+% interior stencil
+switch order
+    case 2
+        d = [-1/2,0,1/2];
+    case 4
+        d = [1/12,-2/3,0,2/3,-1/12];
+    case 6
+        d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60];
+    case 8
+        d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280];
+    case 10
+        d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260];
+    case 12
+        d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544];
+end
+d = repmat(d,N,1);
+Q = spdiags(d,-order/2:order/2,N,N);
+
+% Boundaries
+Q0_0 = -5.0000000000000e-01;
+Q0_1 =  6.1697245625434e-01;
+Q0_2 = -1.1697245625434e-01;
+Q0_3 =  0.0000000000000e+00;
+Q0_4 =  0.0000000000000e+00;
+Q1_0 = -6.1697245625434e-01;
+Q1_1 =  0.0000000000000e+00;
+Q1_2 =  7.0030578958767e-01;
+Q1_3 = -8.3333333333333e-02;
+Q1_4 =  0.0000000000000e+00;
+Q2_0 =  1.1697245625434e-01;
+Q2_1 = -7.0030578958767e-01;
+Q2_2 =  0.0000000000000e+00;
+Q2_3 =  6.6666666666667e-01;
+Q2_4 = -8.3333333333333e-02;
+for i = 1:BP
+    for j = 1:BP
+        Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]);
+        Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]);
+    end
+end
+%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Difference operator %%
+D1 = H\Q;
+%%%%%%%%%%%%%%%%%%%%%%%%%%%
\ No newline at end of file
diff -r 6a5e94bb5e13 -r 07fa0d6a05bb +sbp/D1_minimal_6th_5BP_2shifts.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/D1_minimal_6th_5BP_2shifts.m	Wed Sep 07 13:40:41 2016 +0200
@@ -0,0 +1,128 @@
+function [D1,H,x,h] = D1_minimal_6th_5BP_2shifts(N,L)
+
+% L: Domain length
+% N: Number of grid points
+if(nargin < 2)
+    L = 1;
+end
+
+% BP: Number of boundary points
+% m:  Number of nonequidistant spacings
+% order: Accuracy of interior stencil
+BP = 5;
+m = 2;
+order = 6;
+
+%%%% Non-equidistant grid points %%%%%
+x0 =  0.0000000000000e+00;
+x1 =  4.0842950991998e-01;
+x2 =  1.1968523189207e+00;
+x3 =  2.1968523189207e+00;
+x4 =  3.1968523189207e+00;
+x5 =  4.1968523189207e+00;
+
+xb = zeros(m+1,1);
+for i = 0:m
+    xb(i+1) = eval(['x' num2str(i)]);
+end
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Compute h %%%%%%%%%%
+h = L/(2*xb(end) + N-1-2*m);
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Define grid %%%%%%%%
+x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ];
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Norm matrix %%%%%%%%
+P = zeros(BP,1);
+%#ok<*NASGU>
+P0 =  1.2740260779883e-01;
+P1 =  6.1820981002054e-01;
+P2 =  9.4308973897679e-01;
+P3 =  1.0093019060199e+00;
+P4 =  9.9884825610465e-01;
+
+for i = 0:BP-1
+    P(i+1) = eval(['P' num2str(i)]);
+end
+
+H = ones(N,1);
+H(1:BP) = P;
+H(end-BP+1:end) = flip(P);
+H = spdiags(h*H,0,N,N);
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Q matrix %%%%%%%%%%%
+
+% interior stencil
+switch order
+    case 2
+        d = [-1/2,0,1/2];
+    case 4
+        d = [1/12,-2/3,0,2/3,-1/12];
+    case 6
+        d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60];
+    case 8
+        d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280];
+    case 10
+        d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260];
+    case 12
+        d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544];
+end
+d = repmat(d,N,1);
+Q = spdiags(d,-order/2:order/2,N,N);
+
+% Boundaries
+Q0_0 = -5.0000000000000e-01;
+Q0_1 =  6.3217364546846e-01;
+Q0_2 = -1.6411963429825e-01;
+Q0_3 =  3.6495407984639e-02;
+Q0_4 = -4.5494191548490e-03;
+Q0_5 =  0.0000000000000e+00;
+Q0_6 =  0.0000000000000e+00;
+Q0_7 =  0.0000000000000e+00;
+Q1_0 = -6.3217364546846e-01;
+Q1_1 =  0.0000000000000e+00;
+Q1_2 =  8.0515625504417e-01;
+Q1_3 = -2.0755653563249e-01;
+Q1_4 =  3.4573926056780e-02;
+Q1_5 =  0.0000000000000e+00;
+Q1_6 =  0.0000000000000e+00;
+Q1_7 =  0.0000000000000e+00;
+Q2_0 =  1.6411963429825e-01;
+Q2_1 = -8.0515625504417e-01;
+Q2_2 =  0.0000000000000e+00;
+Q2_3 =  7.9402676057785e-01;
+Q2_4 = -1.6965680649860e-01;
+Q2_5 =  1.6666666666667e-02;
+Q2_6 =  0.0000000000000e+00;
+Q2_7 =  0.0000000000000e+00;
+Q3_0 = -3.6495407984639e-02;
+Q3_1 =  2.0755653563249e-01;
+Q3_2 = -7.9402676057785e-01;
+Q3_3 =  0.0000000000000e+00;
+Q3_4 =  7.5629896626333e-01;
+Q3_5 = -1.5000000000000e-01;
+Q3_6 =  1.6666666666667e-02;
+Q3_7 =  0.0000000000000e+00;
+Q4_0 =  4.5494191548490e-03;
+Q4_1 = -3.4573926056780e-02;
+Q4_2 =  1.6965680649860e-01;
+Q4_3 = -7.5629896626333e-01;
+Q4_4 =  0.0000000000000e+00;
+Q4_5 =  7.5000000000000e-01;
+Q4_6 = -1.5000000000000e-01;
+Q4_7 =  1.6666666666667e-02;
+for i = 1:BP
+    for j = 1:BP
+        Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]);
+        Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]);
+    end
+end
+%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Difference operator %%
+D1 = H\Q;
+%%%%%%%%%%%%%%%%%%%%%%%%%%%
\ No newline at end of file
diff -r 6a5e94bb5e13 -r 07fa0d6a05bb +sbp/D1_minimal_8th_6BP_2shifts.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/D1_minimal_8th_6BP_2shifts.m	Wed Sep 07 13:40:41 2016 +0200
@@ -0,0 +1,150 @@
+function [D1,H,x,h] = D1_minimal_8th_6BP_2shifts(N,L)
+
+% L: Domain length
+% N: Number of grid points
+if(nargin < 2)
+    L = 1;
+end
+
+% BP: Number of boundary points
+% m:  Number of nonequidistant spacings
+% order: Accuracy of interior stencil
+BP = 6;
+m = 2;
+order = 8;
+
+%%%% Non-equidistant grid points %%%%%
+x0 =  0.0000000000000e+00;
+x1 =  4.9439570885261e-01;
+x2 =  1.4051531374839e+00;
+x3 =  2.4051531374839e+00;
+x4 =  3.4051531374839e+00;
+x5 =  4.4051531374839e+00;
+x6 =  5.4051531374839e+00;
+
+xb = zeros(m+1,1);
+for i = 0:m
+    xb(i+1) = eval(['x' num2str(i)]);
+end
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Compute h %%%%%%%%%%
+h = L/(2*xb(end) + N-1-2*m);
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Define grid %%%%%%%%
+x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ];
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Norm matrix %%%%%%%%
+P = zeros(BP,1);
+%#ok<*NASGU>
+P0 =  1.4523997892351e-01;
+P1 =  7.6864793350174e-01;
+P2 =  9.9116487068535e-01;
+P3 =  9.9992473335107e-01;
+P4 =  1.0002097054636e+00;
+P5 =  9.9996591555866e-01;
+
+for i = 0:BP-1
+    P(i+1) = eval(['P' num2str(i)]);
+end
+
+H = ones(N,1);
+H(1:BP) = P;
+H(end-BP+1:end) = flip(P);
+H = spdiags(h*H,0,N,N);
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Q matrix %%%%%%%%%%%
+
+% interior stencil
+switch order
+    case 2
+        d = [-1/2,0,1/2];
+    case 4
+        d = [1/12,-2/3,0,2/3,-1/12];
+    case 6
+        d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60];
+    case 8
+        d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280];
+    case 10
+        d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260];
+    case 12
+        d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544];
+end
+d = repmat(d,N,1);
+Q = spdiags(d,-order/2:order/2,N,N);
+
+% Boundaries
+Q0_0 = -5.0000000000000e-01;
+Q0_1 =  6.6697342753834e-01;
+Q0_2 = -2.2919342278749e-01;
+Q0_3 =  7.4283116457276e-02;
+Q0_4 = -1.2020661178873e-02;
+Q0_5 = -4.2460029252999e-05;
+Q0_6 =  0.0000000000000e+00;
+Q0_7 =  0.0000000000000e+00;
+Q0_8 =  0.0000000000000e+00;
+Q0_9 =  0.0000000000000e+00;
+Q1_0 = -6.6697342753834e-01;
+Q1_1 =  0.0000000000000e+00;
+Q1_2 =  8.8241196934163e-01;
+Q1_3 = -2.6653314104602e-01;
+Q1_4 =  5.5302527504316e-02;
+Q1_5 = -4.2079282615860e-03;
+Q1_6 =  0.0000000000000e+00;
+Q1_7 =  0.0000000000000e+00;
+Q1_8 =  0.0000000000000e+00;
+Q1_9 =  0.0000000000000e+00;
+Q2_0 =  2.2919342278749e-01;
+Q2_1 = -8.8241196934163e-01;
+Q2_2 =  0.0000000000000e+00;
+Q2_3 =  8.2904844081126e-01;
+Q2_4 = -2.1156614214635e-01;
+Q2_5 =  3.9307676460659e-02;
+Q2_6 = -3.5714285714286e-03;
+Q2_7 =  0.0000000000000e+00;
+Q2_8 =  0.0000000000000e+00;
+Q2_9 =  0.0000000000000e+00;
+Q3_0 = -7.4283116457276e-02;
+Q3_1 =  2.6653314104602e-01;
+Q3_2 = -8.2904844081126e-01;
+Q3_3 =  0.0000000000000e+00;
+Q3_4 =  8.0305501223679e-01;
+Q3_5 = -2.0078040553808e-01;
+Q3_6 =  3.8095238095238e-02;
+Q3_7 = -3.5714285714286e-03;
+Q3_8 =  0.0000000000000e+00;
+Q3_9 =  0.0000000000000e+00;
+Q4_0 =  1.2020661178873e-02;
+Q4_1 = -5.5302527504316e-02;
+Q4_2 =  2.1156614214635e-01;
+Q4_3 = -8.0305501223679e-01;
+Q4_4 =  0.0000000000000e+00;
+Q4_5 =  8.0024692689207e-01;
+Q4_6 = -2.0000000000000e-01;
+Q4_7 =  3.8095238095238e-02;
+Q4_8 = -3.5714285714286e-03;
+Q4_9 =  0.0000000000000e+00;
+Q5_0 =  4.2460029252999e-05;
+Q5_1 =  4.2079282615860e-03;
+Q5_2 = -3.9307676460659e-02;
+Q5_3 =  2.0078040553808e-01;
+Q5_4 = -8.0024692689207e-01;
+Q5_5 =  0.0000000000000e+00;
+Q5_6 =  8.0000000000000e-01;
+Q5_7 = -2.0000000000000e-01;
+Q5_8 =  3.8095238095238e-02;
+Q5_9 = -3.5714285714286e-03;
+for i = 1:BP
+    for j = 1:BP
+        Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]);
+        Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]);
+    end
+end
+%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Difference operator %%
+D1 = H\Q;
+%%%%%%%%%%%%%%%%%%%%%%%%%%%
\ No newline at end of file
diff -r 6a5e94bb5e13 -r 07fa0d6a05bb +sbp/D1_nonequidistant_accurate.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/D1_nonequidistant_accurate.m	Wed Sep 07 13:40:41 2016 +0200
@@ -0,0 +1,60 @@
+classdef D1_nonequidistant_accurate < sbp.OpSet
+    properties
+        norms % Struct containing norm matrices such as H,Q, M
+        boundary  % Struct contanging vectors for boundry point approximations
+        derivatives % Struct containging differentiation operators
+        borrowing % Struct with borrowing limits for different norm matrices
+        m % Number of grid points.
+        h % Step size
+        x % grid
+    end
+
+    methods
+        function obj = D1_nonequidistant_accurate(m,L,order)
+
+            if order == 4
+                [D1,H,grid,dx] = D1_4th_4BP_2shifts(m,L);
+            elseif order == 6
+                [D1,H,grid,dx] = D1_6th_6BP_3shifts(m,L);
+            elseif order == 8
+                [D1,H,grid,dx] = D1_8th_8BP_4shifts(m,L);
+            elseif order == 10
+                [D1,H,grid,dx] = D1_10th_10BP_5shifts(m,L);
+            elseif order == 12
+                [D1,H,grid,dx] = D1_12th_12BP_6shifts(m,L);
+            else
+                error('Invalid operator order %d.',order);
+            end
+
+            Q = H*D1;
+            e_1 = sparse(m,1);
+            e_m = sparse(m,1);
+            e_1(1) = 1;
+            e_m(m) = 1;
+            
+            obj.h = dx;
+            obj.m = m;
+            obj.x = grid;
+
+            obj.norms.H = H;
+            obj.norms.HI = HI;
+            obj.norms.Q = Q;
+
+            obj.boundary.e_1 = e_1;
+            obj.boundary.e_m = e_m;
+
+            obj.derivatives.D1 = D1;
+        end
+    end
+
+    methods (Static)
+        function lambda = smallestGrid(obj)
+            error('Not implmented')
+        end
+    end
+end
+
+
+
+
+
diff -r 6a5e94bb5e13 -r 07fa0d6a05bb +sbp/D1_nonequidistant_minimal.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/D1_nonequidistant_minimal.m	Wed Sep 07 13:40:41 2016 +0200
@@ -0,0 +1,60 @@
+classdef D1_nonequidistant_minimal < sbp.OpSet
+    properties
+        norms % Struct containing norm matrices such as H,Q, M
+        boundary  % Struct contanging vectors for boundry point approximations
+        derivatives % Struct containging differentiation operators
+        borrowing % Struct with borrowing limits for different norm matrices
+        m % Number of grid points.
+        h % Step size
+        x % grid
+    end
+
+    methods
+        function obj = D1_nonequidistant_minimal(m,L,order)
+
+            if order == 4
+                [D1,H,grid,dx] = D1_minimal_4th_3BP_1shifts(m,L);
+            elseif order == 6
+                [D1,H,grid,dx] = D1_minimal_6th_5BP_2shifts(m,L);
+            elseif order == 8
+                [D1,H,grid,dx] = D1_minimal_8th_6BP_2shifts(m,L);
+            elseif order == 10
+                [D1,H,grid,dx] = D1_minimal_10th_8BP_3shifts(m,L);
+            elseif order == 12
+                [D1,H,grid,dx] = D1_minimal_12th_10BP_4shifts(m,L);
+            else
+                error('Invalid operator order %d.',order);
+            end
+
+            Q = H*D1;
+            e_1 = sparse(m,1);
+            e_m = sparse(m,1);
+            e_1(1) = 1;
+            e_m(m) = 1;
+            
+            obj.h = dx;
+            obj.m = m;
+            obj.x = grid;
+
+            obj.norms.H = H;
+            obj.norms.HI = HI;
+            obj.norms.Q = Q;
+
+            obj.boundary.e_1 = e_1;
+            obj.boundary.e_m = e_m;
+
+            obj.derivatives.D1 = D1;
+        end
+    end
+
+    methods (Static)
+        function lambda = smallestGrid(obj)
+            error('Not implmented')
+        end
+    end
+end
+
+
+
+
+
diff -r 6a5e94bb5e13 -r 07fa0d6a05bb +sbp/D2.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/D2.m	Wed Sep 07 13:40:41 2016 +0200
@@ -0,0 +1,63 @@
+classdef D2 < sbp.OpSet
+    properties
+        norms % Struct containing norm matrices such as H,Q, M
+        boundary  % Struct contanging vectors for boundry point approximations
+        derivatives % Struct containging differentiation operators
+        borrowing % Struct with borrowing limits for different norm matrices
+        m % Number of grid points.
+        h % Step size
+    end
+
+    methods
+        function obj = D2(m,h,order)
+
+            if order == 2
+                [H, HI, D1, D2, e_1, e_m, M,Q S_1, S_m] = sbp.ordinary2(m,h);
+                obj.borrowing.M.S = 0.4000;
+            elseif order == 4
+                [H, HI, D1, D2, e_1, e_m, M,Q S_1, S_m] = sbp.ordinary4(m,h);
+                obj.borrowing.M.S = 0.2508;
+            elseif order == 6
+                [H, HI, D1, D2, e_1, e_m, M,Q S_1, S_m] = sbp.ordinary6(m,h);
+                obj.borrowing.M.S = 0.1878;
+            elseif order == 8
+                [H, HI, D1, D2, e_1, e_m, M,Q S_1, S_m] = sbp.ordinary8(m,h);
+                obj.borrowing.M.S = 0.0015;
+            elseif order == 10
+                [H, HI, D1, D2, e_1, e_m, M,Q S_1, S_m] = sbp.ordinary10(m,h);
+                obj.borrowing.M.S = 0.0351;
+            else
+                error('Invalid operator order %d.',order);
+            end
+
+            obj.h = h;
+            obj.m = m;
+
+            obj.norms.H = H;
+            obj.norms.HI = HI;
+            obj.norms.Q = Q;
+            obj.norms.M = M;
+
+            obj.boundary.e_1 = e_1;
+            obj.boundary.S_1 = S_1;
+
+            obj.boundary.e_m = e_m;
+            obj.boundary.S_m = S_m;
+
+            obj.derivatives.D1 = D1;
+            obj.derivatives.D2 = D2;
+
+        end
+    end
+
+    methods (Static)
+        function lambda = smallestGrid(obj)
+            error('Not implmented')
+        end
+    end
+end
+
+
+
+
+
diff -r 6a5e94bb5e13 -r 07fa0d6a05bb +sbp/D2BlockNorm.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/D2BlockNorm.m	Wed Sep 07 13:40:41 2016 +0200
@@ -0,0 +1,55 @@
+classdef D2BlockNorm < sbp.OpSet
+    properties
+        norms % Struct containing norm matrices such as H,Q, M
+        boundary  % Struct contanging vectors for boundry point approximations
+        derivatives % Struct containging differentiation operators
+        borrowing % Struct with borrowing limits for different norm matrices
+        m % Number of grid points.
+        h % Step size
+    end
+
+
+
+    methods
+        function obj = D2BlockNorm(m,h,order)
+
+            if order == 4
+                [H, HI, D1, D2, e_1, e_m, M,Q S_1, S_m] = sbp.blocknorm4(m,h);
+            elseif order == 6
+                [H, HI, D1, D2, e_1, e_m, M,Q S_1, S_m] = sbp.blocknorm6(m,h);
+            elseif order == 8
+                [H, HI, D1, D2, e_1, e_m, M,Q S_1, S_m] = sbp.blocknorm8(m,h);
+            elseif order == 10
+                [H, HI, D1, D2, e_1, e_m, M,Q S_1, S_m] = sbp.blocknorm10(m,h);
+            else
+                error('Invalid operator order %d.',order);
+            end
+
+            obj.h = h;
+            obj.m = m;
+
+            obj.norms.H = H;
+            obj.norms.HI = HI;
+            obj.norms.Q = Q;
+            obj.norms.M = M;
+
+            obj.boundary.e_1 = e_1;
+            obj.boundary.S_1 = S_1;
+
+            obj.boundary.e_m = e_m;
+            obj.boundary.S_m = S_m;
+
+            obj.derivatives.D1 = D1;
+            obj.derivatives.D2 = D2;
+        end
+    end
+
+    methods (Static)
+        function lambda = smallestGrid(obj)
+            error('Not implmented')
+        end
+    end
+
+
+
+end
\ No newline at end of file
diff -r 6a5e94bb5e13 -r 07fa0d6a05bb +sbp/D2Variable.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/D2Variable.m	Wed Sep 07 13:40:41 2016 +0200
@@ -0,0 +1,52 @@
+classdef D2Variable < sbp.OpSet
+    properties
+        norms % Struct containing norm matrices such as H,Q, M
+        boundary  % Struct contanging vectors for boundry point approximations
+        derivatives % Struct containging differentiation operators
+        borrowing % Struct with borrowing limits for different norm matrices
+        m % Number of grid points.
+        h % Step size
+    end
+
+    methods
+        function obj = D2Variable(m,h,order)
+
+            switch order
+                case 4
+                    [H, HI, D1, D2, e_1, e_m, S_1, S_m] = sbp.variable4(m,h);
+                    obj.borrowing.M.S = 0.2505765857;
+                otherwise
+                    error('Invalid operator order %d.',order);
+            end
+
+            obj.h = h;
+            obj.m = m;
+
+            obj.norms.H = H;
+            obj.norms.HI = HI;
+            % obj.norms.Q = Q;
+            % obj.norms.M = M;
+
+            obj.boundary.e_1 = e_1;
+            obj.boundary.S_1 = S_1;
+
+            obj.boundary.e_m = e_m;
+            obj.boundary.S_m = S_m;
+
+            obj.derivatives.D1 = D1;
+            obj.derivatives.D2 = D2;
+
+        end
+    end
+
+    methods (Static)
+        function lambda = smallestGrid(obj)
+            error('Not implmented')
+        end
+    end
+end
+
+
+
+
+
diff -r 6a5e94bb5e13 -r 07fa0d6a05bb +sbp/D4.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/D4.m	Wed Sep 07 13:40:41 2016 +0200
@@ -0,0 +1,64 @@
+classdef D4 < sbp.OpSet
+    properties
+        norms % Struct containing norm matrices such as H,Q, M
+        boundary  % Struct contanging vectors for boundry point approximations
+        derivatives % Struct containging differentiation operators
+        borrowing % Struct with borrowing limits for different norm matrices
+        m % Number of grid points.
+        h % Step size
+    end
+
+
+
+    methods
+        function obj = D4(m,h,order)
+
+            if order == 4
+                [H, HI, D1, D2, D3, D4, e_1, e_m, M, M4,Q, Q3, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = sbp.higher4(m,h);
+                obj.borrowing.N.S2 = 0.5485;
+                obj.borrowing.N.S3 = 1.0882;
+            elseif order == 6
+                [H, HI, D1, D2, D3, D4, e_1, e_m, M, M4,Q, Q3, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = sbp.higher6(m,h);
+                obj.borrowing.N.S2 = 0.3227;
+                obj.borrowing.N.S3 = 0.1568;
+            else
+                error('Invalid operator order %d.',order);
+            end
+
+            obj.h = h;
+            obj.m = m;
+
+            obj.norms.H = H;
+            obj.norms.HI = HI;
+            obj.norms.Q = Q;
+            obj.norms.M = M;
+            obj.norms.Q3 = Q3;
+            obj.norms.N = M4;
+
+            obj.boundary.e_1 = e_1;
+            obj.boundary.S_1 = S_1;
+            obj.boundary.S2_1 = S2_1;
+            obj.boundary.S3_1 = S3_1;
+
+            obj.boundary.e_m = e_m;
+            obj.boundary.S_m = S_m;
+            obj.boundary.S2_m = S2_m;
+            obj.boundary.S3_m = S3_m;
+
+            obj.derivatives.D1 = D1;
+            obj.derivatives.D2 = D2;
+            obj.derivatives.D3 = D3;
+            obj.derivatives.D4 = D4;
+
+        end
+    end
+
+    methods (Static)
+        function lambda = smallestGrid(obj)
+            error('Not implmented')
+        end
+    end
+
+
+
+end
\ No newline at end of file
diff -r 6a5e94bb5e13 -r 07fa0d6a05bb +sbp/D4Compatible.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/D4Compatible.m	Wed Sep 07 13:40:41 2016 +0200
@@ -0,0 +1,64 @@
+classdef D4Compatible < sbp.OpSet
+    properties
+        norms % Struct containing norm matrices such as H,Q, M
+        boundary  % Struct contanging vectors for boundry point approximations
+        derivatives % Struct containging differentiation operators
+        borrowing % Struct with borrowing limits for different norm matrices
+        m % Number of grid points.
+        h % Step size
+    end
+
+
+
+    methods
+        function obj = D4Compatible(m,h,order)
+
+            if order == 2
+                [H, HI, D1, D4, e_1, e_m, M4, Q, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = sbp.higher_compatible2(m,h);
+                obj.borrowing.N.S2 = 0.7500;
+                obj.borrowing.N.S3 = 0.3000;
+            elseif order == 4
+                [H, HI, D1, D4, e_1, e_m, M4, Q, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = sbp.higher_compatible4(m,h);
+                obj.borrowing.N.S2 = 0.4210;
+                obj.borrowing.N.S3 = 0.7080;
+            elseif order == 6
+                [H, HI, D1, D4, e_1, e_m, M4, Q, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = sbp.higher_compatible6(m,h);
+                obj.borrowing.N.S2 = 0.06925;
+                obj.borrowing.N.S3 = 0.05128;
+            else
+                error('Invalid operator order.');
+            end
+
+            obj.h = h;
+            obj.m = m;
+
+            obj.norms.H = H;
+            obj.norms.HI = HI;
+            obj.norms.Q = Q;
+            obj.norms.N = M4;
+
+            obj.boundary.e_1 = e_1;
+            obj.boundary.S_1 = S_1;
+            obj.boundary.S2_1 = S2_1;
+            obj.boundary.S3_1 = S3_1;
+
+            obj.boundary.e_m = e_m;
+            obj.boundary.S_m = S_m;
+            obj.boundary.S2_m = S2_m;
+            obj.boundary.S3_m = S3_m;
+
+            obj.derivatives.D1 = D1;
+            obj.derivatives.D4 = D4;
+
+        end
+    end
+
+    methods (Static)
+        function lambda = smallestGrid(obj)
+            error('Not implmented')
+        end
+    end
+
+
+
+end
\ No newline at end of file
diff -r 6a5e94bb5e13 -r 07fa0d6a05bb +sbp/D4CompatibleVariable.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/D4CompatibleVariable.m	Wed Sep 07 13:40:41 2016 +0200
@@ -0,0 +1,63 @@
+classdef D4CompatibleVariable < sbp.OpSet
+    properties
+        norms % Struct containing norm matrices such as H,Q, M
+        boundary  % Struct contanging vectors for boundry point approximations
+        derivatives % Struct containging differentiation operators
+        borrowing % Struct with borrowing limits for different norm matrices
+        m % Number of grid points.
+        h % Step size
+    end
+
+
+
+    methods
+        function obj = D4CompatibleVariable(m,h,order)
+
+            if order == 2
+                [H, HI, D1, D2, D3, D4, e_1, e_m, M4, Q, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = sbp.higher2_compatible_halfvariable(m,h);
+                obj.borrowing.N.S2 = 1.2500;
+                obj.borrowing.N.S3 = 0.4000;
+            elseif order == 4
+                [H, HI, D2, D4, e_1, e_m, M4, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = sbp.higher4_compatible_halfvariable(m,h);
+                obj.borrowing.N.S2 = 0.5055;
+                obj.borrowing.N.S3 = 0.9290;
+            elseif order == 6
+                [H, HI, D2, D4, e_1, e_m, M4, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = sbp.higher6_compatible_halfvariable(m,h);
+                obj.borrowing.N.S2 = 0.3259;
+                obj.borrowing.N.S3 = 0.1580;
+            else
+                error('Invalid operator order.');
+            end
+
+            obj.h = h;
+            obj.m = m;
+
+            obj.norms.H = H;
+            obj.norms.HI = HI;
+            obj.norms.N = M4;
+
+            obj.boundary.e_1 = e_1;
+            obj.boundary.S_1 = S_1;
+            obj.boundary.S2_1 = S2_1;
+            obj.boundary.S3_1 = S3_1;
+
+            obj.boundary.e_m = e_m;
+            obj.boundary.S_m = S_m;
+            obj.boundary.S2_m = S2_m;
+            obj.boundary.S3_m = S3_m;
+
+            obj.derivatives.D2 = D2;
+            obj.derivatives.D4 = D4;
+
+        end
+    end
+
+    methods (Static)
+        function lambda = smallestGrid(obj)
+            error('Not implmented')
+        end
+    end
+
+
+
+end
\ No newline at end of file
diff -r 6a5e94bb5e13 -r 07fa0d6a05bb +sbp/D4Periodic.m
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/D4Periodic.m	Wed Sep 07 13:40:41 2016 +0200
@@ -0,0 +1,65 @@
+classdef D4Periodic < sbp.OpSet
+    properties
+        norms % Struct containing norm matrices such as H,Q, M
+        boundary  % Struct contanging vectors for boundry point approximations
+        derivatives % Struct containging differentiation operators
+        borrowing % Struct with borrowing limits for different norm matrices
+        m % Number of grid points.
+        h % Step size
+    end
+
+
+
+    methods
+        function obj = D4Periodic(m,h,order)
+
+            if order == 2
+                [H, HI, D1, D4, e_1, e_m, M4, Q, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = sbp.higher2_compatible(m,h);
+                obj.borrowing.N.S2 = 0.7500;
+                obj.borrowing.N.S3 = 0.3000;
+            elseif order == 4
+
+                [H, HI, D1, D4, e_1, e_m, M4, Q, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = sbp.higher4_compatible(m,h);
+                obj.borrowing.N.S2 = 0.4210;
+                obj.borrowing.N.S3 = 0.7080;
+            elseif order == 6
+                [H, HI, D1, D4, e_1, e_m, M4, Q, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = sbp.higher6_compatible(m,h);
+                obj.borrowing.N.S2 = 0.06925;
+                obj.borrowing.N.S3 = 0.05128;
+            else
+                error('Invalid operator order.');
+            end
+
+            obj.h = h;
+            obj.m = m;
+
+            obj.norms.H = H;
+            obj.norms.HI = HI;
+            obj.norms.Q = Q;
+            obj.norms.N = M4;
+
+            obj.boundary.e_1 = e_1;
+            obj.boundary.S_1 = S_1;
+            obj.boundary.S2_1 = S2_1;
+            obj.boundary.S3_1 = S3_1;
+
+            obj.boundary.e_m = e_m;
+            obj.boundary.S_m = S_m;
+            obj.boundary.S2_m = S2_m;
+            obj.boundary.S3_m = S3_m;
+
+            obj.derivatives.D1 = D1;
+            obj.derivatives.D4 = D4;
+
+        end
+    end
+
+    methods (Static)
+        function lambda = smallestGrid(obj)
+            error('Not implmented')
+        end
+    end
+
+
+
+end
\ No newline at end of file
diff -r 6a5e94bb5e13 -r 07fa0d6a05bb +sbp/Higher.m
--- a/+sbp/Higher.m	Tue Sep 06 10:36:33 2016 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,64 +0,0 @@
-classdef Higher < sbp.OpSet
-    properties
-        norms % Struct containing norm matrices such as H,Q, M
-        boundary  % Struct contanging vectors for boundry point approximations
-        derivatives % Struct containging differentiation operators
-        borrowing % Struct with borrowing limits for different norm matrices
-        m % Number of grid points.
-        h % Step size
-    end
-
-
-
-    methods
-        function obj = Higher(m,h,order)
-
-            if order == 4
-                [H, HI, D1, D2, D3, D4, e_1, e_m, M, M4,Q, Q3, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = sbp.higher4(m,h);
-                obj.borrowing.N.S2 = 0.5485;
-                obj.borrowing.N.S3 = 1.0882;
-            elseif order == 6
-                [H, HI, D1, D2, D3, D4, e_1, e_m, M, M4,Q, Q3, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = sbp.higher6(m,h);
-                obj.borrowing.N.S2 = 0.3227;
-                obj.borrowing.N.S3 = 0.1568;
-            else
-                error('Invalid operator order %d.',order);
-            end
-
-            obj.h = h;
-            obj.m = m;
-
-            obj.norms.H = H;
-            obj.norms.HI = HI;
-            obj.norms.Q = Q;
-            obj.norms.M = M;
-            obj.norms.Q3 = Q3;
-            obj.norms.N = M4;
-
-            obj.boundary.e_1 = e_1;
-            obj.boundary.S_1 = S_1;
-            obj.boundary.S2_1 = S2_1;
-            obj.boundary.S3_1 = S3_1;
-
-            obj.boundary.e_m = e_m;
-            obj.boundary.S_m = S_m;
-            obj.boundary.S2_m = S2_m;
-            obj.boundary.S3_m = S3_m;
-
-            obj.derivatives.D1 = D1;
-            obj.derivatives.D2 = D2;
-            obj.derivatives.D3 = D3;
-            obj.derivatives.D4 = D4;
-
-        end
-    end
-
-    methods (Static)
-        function lambda = smallestGrid(obj)
-            error('Not implmented')
-        end
-    end
-
-
-
-end
\ No newline at end of file
diff -r 6a5e94bb5e13 -r 07fa0d6a05bb +sbp/HigherCompatible.m
--- a/+sbp/HigherCompatible.m	Tue Sep 06 10:36:33 2016 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,64 +0,0 @@
-classdef HigherCompatible < sbp.OpSet
-    properties
-        norms % Struct containing norm matrices such as H,Q, M
-        boundary  % Struct contanging vectors for boundry point approximations
-        derivatives % Struct containging differentiation operators
-        borrowing % Struct with borrowing limits for different norm matrices
-        m % Number of grid points.
-        h % Step size
-    end
-
-
-
-    methods
-        function obj = HigherCompatible(m,h,order)
-
-            if order == 2
-                [H, HI, D1, D4, e_1, e_m, M4, Q, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = sbp.higher_compatible2(m,h);
-                obj.borrowing.N.S2 = 0.7500;
-                obj.borrowing.N.S3 = 0.3000;
-            elseif order == 4
-                [H, HI, D1, D4, e_1, e_m, M4, Q, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = sbp.higher_compatible4(m,h);
-                obj.borrowing.N.S2 = 0.4210;
-                obj.borrowing.N.S3 = 0.7080;
-            elseif order == 6
-                [H, HI, D1, D4, e_1, e_m, M4, Q, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = sbp.higher_compatible6(m,h);
-                obj.borrowing.N.S2 = 0.06925;
-                obj.borrowing.N.S3 = 0.05128;
-            else
-                error('Invalid operator order.');
-            end
-
-            obj.h = h;
-            obj.m = m;
-
-            obj.norms.H = H;
-            obj.norms.HI = HI;
-            obj.norms.Q = Q;
-            obj.norms.N = M4;
-
-            obj.boundary.e_1 = e_1;
-            obj.boundary.S_1 = S_1;
-            obj.boundary.S2_1 = S2_1;
-            obj.boundary.S3_1 = S3_1;
-
-            obj.boundary.e_m = e_m;
-            obj.boundary.S_m = S_m;
-            obj.boundary.S2_m = S2_m;
-            obj.boundary.S3_m = S3_m;
-
-            obj.derivatives.D1 = D1;
-            obj.derivatives.D4 = D4;
-
-        end
-    end
-
-    methods (Static)
-        function lambda = smallestGrid(obj)
-            error('Not implmented')
-        end
-    end
-
-
-
-end
\ No newline at end of file
diff -r 6a5e94bb5e13 -r 07fa0d6a05bb +sbp/HigherCompatibleVariable.m
--- a/+sbp/HigherCompatibleVariable.m	Tue Sep 06 10:36:33 2016 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,63 +0,0 @@
-classdef HigherCompatibleVariable < sbp.OpSet
-    properties
-        norms % Struct containing norm matrices such as H,Q, M
-        boundary  % Struct contanging vectors for boundry point approximations
-        derivatives % Struct containging differentiation operators
-        borrowing % Struct with borrowing limits for different norm matrices
-        m % Number of grid points.
-        h % Step size
-    end
-
-
-
-    methods
-        function obj = HigherCompatibleVariable(m,h,order)
-
-            if order == 2
-                [H, HI, D1, D2, D3, D4, e_1, e_m, M4, Q, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = sbp.higher2_compatible_halfvariable(m,h);
-                obj.borrowing.N.S2 = 1.2500;
-                obj.borrowing.N.S3 = 0.4000;
-            elseif order == 4
-                [H, HI, D2, D4, e_1, e_m, M4, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = sbp.higher4_compatible_halfvariable(m,h);
-                obj.borrowing.N.S2 = 0.5055;
-                obj.borrowing.N.S3 = 0.9290;
-            elseif order == 6
-                [H, HI, D2, D4, e_1, e_m, M4, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = sbp.higher6_compatible_halfvariable(m,h);
-                obj.borrowing.N.S2 = 0.3259;
-                obj.borrowing.N.S3 = 0.1580;
-            else
-                error('Invalid operator order.');
-            end
-
-            obj.h = h;
-            obj.m = m;
-
-            obj.norms.H = H;
-            obj.norms.HI = HI;
-            obj.norms.N = M4;
-
-            obj.boundary.e_1 = e_1;
-            obj.boundary.S_1 = S_1;
-            obj.boundary.S2_1 = S2_1;
-            obj.boundary.S3_1 = S3_1;
-
-            obj.boundary.e_m = e_m;
-            obj.boundary.S_m = S_m;
-            obj.boundary.S2_m = S2_m;
-            obj.boundary.S3_m = S3_m;
-
-            obj.derivatives.D2 = D2;
-            obj.derivatives.D4 = D4;
-
-        end
-    end
-
-    methods (Static)
-        function lambda = smallestGrid(obj)
-            error('Not implmented')
-        end
-    end
-
-
-
-end
\ No newline at end of file
diff -r 6a5e94bb5e13 -r 07fa0d6a05bb +sbp/HigherPeriodic.m
--- a/+sbp/HigherPeriodic.m	Tue Sep 06 10:36:33 2016 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,65 +0,0 @@
-classdef HigherPeriodic < sbp.OpSet
-    properties
-        norms % Struct containing norm matrices such as H,Q, M
-        boundary  % Struct contanging vectors for boundry point approximations
-        derivatives % Struct containging differentiation operators
-        borrowing % Struct with borrowing limits for different norm matrices
-        m % Number of grid points.
-        h % Step size
-    end
-
-
-
-    methods
-        function obj = HigherCompatible(m,h,order)
-
-            if order == 2
-                [H, HI, D1, D4, e_1, e_m, M4, Q, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = sbp.higher2_compatible(m,h);
-                obj.borrowing.N.S2 = 0.7500;
-                obj.borrowing.N.S3 = 0.3000;
-            elseif order == 4
-
-                [H, HI, D1, D4, e_1, e_m, M4, Q, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = sbp.higher4_compatible(m,h);
-                obj.borrowing.N.S2 = 0.4210;
-                obj.borrowing.N.S3 = 0.7080;
-            elseif order == 6
-                [H, HI, D1, D4, e_1, e_m, M4, Q, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = sbp.higher6_compatible(m,h);
-                obj.borrowing.N.S2 = 0.06925;
-                obj.borrowing.N.S3 = 0.05128;
-            else
-                error('Invalid operator order.');
-            end
-
-            obj.h = h;
-            obj.m = m;
-
-            obj.norms.H = H;
-            obj.norms.HI = HI;
-            obj.norms.Q = Q;
-            obj.norms.N = M4;
-
-            obj.boundary.e_1 = e_1;
-            obj.boundary.S_1 = S_1;
-            obj.boundary.S2_1 = S2_1;
-            obj.boundary.S3_1 = S3_1;
-
-            obj.boundary.e_m = e_m;
-            obj.boundary.S_m = S_m;
-            obj.boundary.S2_m = S2_m;
-            obj.boundary.S3_m = S3_m;
-
-            obj.derivatives.D1 = D1;
-            obj.derivatives.D4 = D4;
-
-        end
-    end
-
-    methods (Static)
-        function lambda = smallestGrid(obj)
-            error('Not implmented')
-        end
-    end
-
-
-
-end
\ No newline at end of file
diff -r 6a5e94bb5e13 -r 07fa0d6a05bb +sbp/Ordinary.m
--- a/+sbp/Ordinary.m	Tue Sep 06 10:36:33 2016 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,63 +0,0 @@
-classdef Ordinary < sbp.OpSet
-    properties
-        norms % Struct containing norm matrices such as H,Q, M
-        boundary  % Struct contanging vectors for boundry point approximations
-        derivatives % Struct containging differentiation operators
-        borrowing % Struct with borrowing limits for different norm matrices
-        m % Number of grid points.
-        h % Step size
-    end
-
-    methods
-        function obj = Ordinary(m,h,order)
-
-            if order == 2
-                [H, HI, D1, D2, e_1, e_m, M,Q S_1, S_m] = sbp.ordinary2(m,h);
-                obj.borrowing.M.S = 0.4000;
-            elseif order == 4
-                [H, HI, D1, D2, e_1, e_m, M,Q S_1, S_m] = sbp.ordinary4(m,h);
-                obj.borrowing.M.S = 0.2508;
-            elseif order == 6
-                [H, HI, D1, D2, e_1, e_m, M,Q S_1, S_m] = sbp.ordinary6(m,h);
-                obj.borrowing.M.S = 0.1878;
-            elseif order == 8
-                [H, HI, D1, D2, e_1, e_m, M,Q S_1, S_m] = sbp.ordinary8(m,h);
-                obj.borrowing.M.S = 0.0015;
-            elseif order == 10
-                [H, HI, D1, D2, e_1, e_m, M,Q S_1, S_m] = sbp.ordinary10(m,h);
-                obj.borrowing.M.S = 0.0351;
-            else
-                error('Invalid operator order %d.',order);
-            end
-
-            obj.h = h;
-            obj.m = m;
-
-            obj.norms.H = H;
-            obj.norms.HI = HI;
-            obj.norms.Q = Q;
-            obj.norms.M = M;
-
-            obj.boundary.e_1 = e_1;
-            obj.boundary.S_1 = S_1;
-
-            obj.boundary.e_m = e_m;
-            obj.boundary.S_m = S_m;
-
-            obj.derivatives.D1 = D1;
-            obj.derivatives.D2 = D2;
-
-        end
-    end
-
-    methods (Static)
-        function lambda = smallestGrid(obj)
-            error('Not implmented')
-        end
-    end
-end
-
-
-
-
-
diff -r 6a5e94bb5e13 -r 07fa0d6a05bb +sbp/Upwind.m
--- a/+sbp/Upwind.m	Tue Sep 06 10:36:33 2016 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,59 +0,0 @@
-classdef Upwind < sbp.OpSet
-    properties
-        norms % Struct containing norm matrices such as H,Q, M
-        boundary  % Struct contanging vectors for boundry point approximations
-        derivatives % Struct containging differentiation operators
-        borrowing % Struct with borrowing limits for different norm matrices
-        m % Number of grid points.
-        h % Step size
-    end
-
-    methods
-        function obj = Upwind(m,h,order)
-
-            switch order
-                case 2
-                    [H, HI, Dp, Dm, e_1, e_m] = sbp.upwind2(m,h);
-                case 3
-                    [H, HI, Dp, Dm, e_1, e_m] = sbp.upwind3(m,h);
-                case 4
-                    [H, HI, Dp, Dm, e_1, e_m] = sbp.upwind4(m,h);
-                case 5
-                    [H, HI, Dp, Dm, e_1, e_m] = sbp.upwind5(m,h);
-                case 6
-                    [H, HI, Dp, Dm, e_1, e_m] = sbp.upwind6(m,h);
-                case 7
-                    [H, HI, Dp, Dm, e_1, e_m] = sbp.upwind7(m,h);
-                case 8
-                    [H, HI, Dp, Dm, e_1, e_m] = sbp.upwind8(m,h);
-                case 9
-                    [H, HI, Dp, Dm, e_1, e_m] = sbp.upwind9(m,h);
-                otherwise
-                    error('Invalid operator order %d.',order);
-            end
-
-            obj.h = h;
-            obj.m = m;
-
-            obj.norms.H = H;
-            obj.norms.HI = HI;
-
-            obj.boundary.e_1 = e_1;
-            obj.boundary.e_m = e_m;
-
-            obj.derivatives.Dp = Dp;
-            obj.derivatives.Dm = Dm;
-        end
-    end
-
-    methods (Static)
-        function lambda = smallestGrid(obj)
-            error('Not implmented')
-        end
-    end
-end
-
-
-
-
-
diff -r 6a5e94bb5e13 -r 07fa0d6a05bb +sbp/Variable.m
--- a/+sbp/Variable.m	Tue Sep 06 10:36:33 2016 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,52 +0,0 @@
-classdef Variable < sbp.OpSet
-    properties
-        norms % Struct containing norm matrices such as H,Q, M
-        boundary  % Struct contanging vectors for boundry point approximations
-        derivatives % Struct containging differentiation operators
-        borrowing % Struct with borrowing limits for different norm matrices
-        m % Number of grid points.
-        h % Step size
-    end
-
-    methods
-        function obj = Variable(m,h,order)
-
-            switch order
-                case 4
-                    [H, HI, D1, D2, e_1, e_m, S_1, S_m] = sbp.variable4(m,h);
-                    obj.borrowing.M.S = 0.2505765857;
-                otherwise
-                    error('Invalid operator order %d.',order);
-            end
-
-            obj.h = h;
-            obj.m = m;
-
-            obj.norms.H = H;
-            obj.norms.HI = HI;
-            % obj.norms.Q = Q;
-            % obj.norms.M = M;
-
-            obj.boundary.e_1 = e_1;
-            obj.boundary.S_1 = S_1;
-
-            obj.boundary.e_m = e_m;
-            obj.boundary.S_m = S_m;
-
-            obj.derivatives.D1 = D1;
-            obj.derivatives.D2 = D2;
-
-        end
-    end
-
-    methods (Static)
-        function lambda = smallestGrid(obj)
-            error('Not implmented')
-        end
-    end
-end
-
-
-
-
-