Mercurial > repos > public > sbplib
view +scheme/Hypsyst2d.m @ 1347:ac54767ae1fb feature/poroelastic tip
Add interface, not fully compatible.
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Tue, 30 Apr 2024 14:58:35 +0200 |
parents | 706d1c2b4199 |
children | 78db023a7fe3 |
line wrap: on
line source
classdef Hypsyst2d < scheme.Scheme properties m % Number of points in each direction, possibly a vector n %size of system h % Grid spacing x,y % Grid X,Y % Values of x and y for each grid point order % Order accuracy for the approximation D % non-stabalized scheme operator A, B, E %Coefficient matrices H % Discrete norm % Norms in the x and y directions Hxi,Hyi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. I_x,I_y, I_N e_w, e_e, e_s, e_n params %parameters for the coeficient matrice end methods %Solving Hyperbolic systems on the form u_t=-Au_x-Bu_y-Eu function obj = Hypsyst2d(m, lim, order, A, B, E, params) default_arg('E', []) xlim = lim{1}; ylim = lim{2}; if length(m) == 1 m = [m m]; end obj.A=A; obj.B=B; obj.E=E; m_x = m(1); m_y = m(2); obj.params = params; ops_x = sbp.D2Standard(m_x,xlim,order); ops_y = sbp.D2Standard(m_y,ylim,order); obj.x = ops_x.x; obj.y = ops_y.x; obj.X = kr(obj.x,ones(m_y,1)); obj.Y = kr(ones(m_x,1),obj.y); Aevaluated = obj.evaluateCoefficientMatrix(A, obj.X, obj.Y); Bevaluated = obj.evaluateCoefficientMatrix(B, obj.X, obj.Y); Eevaluated = obj.evaluateCoefficientMatrix(E, obj.X, obj.Y); obj.n = length(A(obj.params,0,0)); I_n = eye(obj.n);I_x = speye(m_x); obj.I_x = I_x; I_y = speye(m_y); obj.I_y = I_y; D1_x = kr(I_n, ops_x.D1, I_y); obj.Hxi = kr(I_n, ops_x.HI, I_y); D1_y = kr(I_n, I_x, ops_y.D1); obj.Hyi = kr(I_n, I_x, ops_y.HI); obj.e_w = kr(I_n, ops_x.e_l, I_y); obj.e_e = kr(I_n, ops_x.e_r, I_y); obj.e_s = kr(I_n, I_x, ops_y.e_l); obj.e_n = kr(I_n, I_x, ops_y.e_r); obj.m = m; obj.h = [ops_x.h ops_y.h]; obj.order = order; obj.D = -Aevaluated*D1_x-Bevaluated*D1_y-Eevaluated; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. function [closure, penalty] = boundary_condition(obj,boundary,type,L) default_arg('type','char'); switch type case{'c','char'} [closure,penalty] = boundary_condition_char(obj,boundary); case{'general'} [closure,penalty] = boundary_condition_general(obj,boundary,L); otherwise error('No such boundary condition') end end function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type) error('Not implemented'); end function N = size(obj) N = obj.m; end function [ret] = evaluateCoefficientMatrix(obj, mat, X, Y) params = obj.params; if isa(mat,'function_handle') [rows,cols] = size(mat(params,0,0)); matVec = mat(params,X',Y'); matVec = sparse(matVec); side = max(length(X),length(Y)); else matVec = mat; [rows,cols] = size(matVec); side = max(length(X),length(Y)); cols = cols/side; end ret = cell(rows,cols); for ii = 1:rows for jj=1:cols ret{ii,jj} = diag(matVec(ii,(jj-1)*side+1:jj*side)); end end ret = cell2mat(ret); end %Characteristic boundary conditions function [closure, penalty] = boundary_condition_char(obj,boundary) params = obj.params; x = obj.x; y = obj.y; switch boundary case {'w','W','west'} e_ = obj.e_w; mat = obj.A; boundPos = 'l'; Hi = obj.Hxi; [V,Vi,D,signVec] = obj.matrixDiag(mat,x(1),y); side = max(length(y)); case {'e','E','east'} e_ = obj.e_e; mat = obj.A; boundPos = 'r'; Hi = obj.Hxi; [V,Vi,D,signVec] = obj.matrixDiag(mat,x(end),y); side = max(length(y)); case {'s','S','south'} e_ = obj.e_s; mat = obj.B; boundPos = 'l'; Hi = obj.Hyi; [V,Vi,D,signVec] = obj.matrixDiag(mat,x,y(1)); side = max(length(x)); case {'n','N','north'} e_ = obj.e_n; mat = obj.B; boundPos = 'r'; Hi = obj.Hyi; [V,Vi,D,signVec] = obj.matrixDiag(mat,x,y(end)); side = max(length(x)); end pos = signVec(1); zeroval = signVec(2); neg = signVec(3); switch boundPos case {'l'} tau = sparse(obj.n*side,pos); Vi_plus = Vi(1:pos,:); tau(1:pos,:) = -abs(D(1:pos,1:pos)); closure = Hi*e_*V*tau*Vi_plus*e_'; penalty = -Hi*e_*V*tau*Vi_plus; case {'r'} tau = sparse(obj.n*side,neg); tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:); closure = Hi*e_*V*tau*Vi_minus*e_'; penalty = -Hi*e_*V*tau*Vi_minus; end end % General boundary condition in the form Lu=g(x) function [closure,penalty] = boundary_condition_general(obj,boundary,L) params = obj.params; x = obj.x; y = obj.y; switch boundary case {'w','W','west'} e_ = obj.e_w; mat = obj.A; boundPos = 'l'; Hi = obj.Hxi; [V,Vi,D,signVec] = obj.matrixDiag(mat,x(1),y); L = obj.evaluateCoefficientMatrix(L,x(1),y); side = max(length(y)); case {'e','E','east'} e_ = obj.e_e; mat = obj.A; boundPos = 'r'; Hi = obj.Hxi; [V,Vi,D,signVec] = obj.matrixDiag(mat,x(end),y); L = obj.evaluateCoefficientMatrix(L,x(end),y); side = max(length(y)); case {'s','S','south'} e_ = obj.e_s; mat = obj.B; boundPos = 'l'; Hi = obj.Hyi; [V,Vi,D,signVec] = obj.matrixDiag(mat,x,y(1)); L = obj.evaluateCoefficientMatrix(L,x,y(1)); side = max(length(x)); case {'n','N','north'} e_ = obj.e_n; mat = obj.B; boundPos = 'r'; Hi = obj.Hyi; [V,Vi,D,signVec] = obj.matrixDiag(mat,x,y(end)); L = obj.evaluateCoefficientMatrix(L,x,y(end)); side = max(length(x)); end pos = signVec(1); zeroval = signVec(2); neg = signVec(3); switch boundPos case {'l'} tau = sparse(obj.n*side,pos); Vi_plus = Vi(1:pos,:); Vi_minus = Vi(pos+zeroval+1:obj.n*side,:); V_plus = V(:,1:pos); V_minus = V(:,(pos+zeroval)+1:obj.n*side); tau(1:pos,:) = -abs(D(1:pos,1:pos)); R = -inv(L*V_plus)*(L*V_minus); closure = Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; penalty = -Hi*e_*V*tau*inv(L*V_plus)*L; case {'r'} tau = sparse(obj.n*side,neg); tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); Vi_plus = Vi(1:pos,:); Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:); V_plus = V(:,1:pos); V_minus = V(:,(pos+zeroval)+1:obj.n*side); R = -inv(L*V_minus)*(L*V_plus); closure = Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_'; penalty = -Hi*e_*V*tau*inv(L*V_minus)*L; end end % Function that diagonalizes a symbolic matrix A as A=V*D*Vi % D is a diagonal matrix with the eigenvalues on A on the diagonal sorted by their sign % [d+ ] % D = [ d0 ] % [ d-] % signVec is a vector specifying the number of possitive, zero and negative eigenvalues of D function [V,Vi, D,signVec] = matrixDiag(obj,mat,x,y) params = obj.params; syms xs ys [V, D]= eig(mat(params,xs,ys)); Vi = inv(V); xs = x; ys = y; side = max(length(x),length(y)); Dret = zeros(obj.n,side*obj.n); Vret = zeros(obj.n,side*obj.n); Viret = zeros(obj.n,side*obj.n); for ii = 1:obj.n for jj = 1:obj.n Dret(jj,(ii-1)*side+1:side*ii) = eval(D(jj,ii)); Vret(jj,(ii-1)*side+1:side*ii) = eval(V(jj,ii)); Viret(jj,(ii-1)*side+1:side*ii) = eval(Vi(jj,ii)); end end D = sparse(Dret); V = sparse(Vret); Vi = sparse(Viret); V = obj.evaluateCoefficientMatrix(V,x,y); Vi = obj.evaluateCoefficientMatrix(Vi,x,y); D = obj.evaluateCoefficientMatrix(D,x,y); DD = diag(D); poseig = (DD>0); zeroeig = (DD==0); negeig = (DD<0); D = diag([DD(poseig); DD(zeroeig); DD(negeig)]); V = [V(:,poseig) V(:,zeroeig) V(:,negeig)]; Vi = [Vi(poseig,:); Vi(zeroeig,:); Vi(negeig,:)]; signVec = [sum(poseig),sum(zeroeig),sum(negeig)]; end end end