view +scheme/Hypsyst2d.m @ 577:e45c9b56d50d feature/grids

Add an Empty grid class The need turned up for the flexural code when we may or may not have a grid for the open water and want to plot that solution. In case there is no open water we need an empty grid to plot the empty gridfunction against to avoid errors.
author Jonatan Werpers <jonatan@werpers.com>
date Thu, 07 Sep 2017 09:16:12 +0200
parents 9d1fc984f40d
children 459eeb99130f
line wrap: on
line source

classdef Hypsyst2d < scheme.Scheme
    properties
        m % Number of points in each direction, possibly a vector
        n %size of system
        h % Grid spacing
        x,y % Grid
        X,Y % Values of x and y for each grid point
        order % Order accuracy for the approximation
        
        D % non-stabalized scheme operator
        A, B, E %Coefficient matrices
        
        H % Discrete norm
        % Norms in the x and y directions
        Hxi,Hyi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir.
        I_x,I_y, I_N
        e_w, e_e, e_s, e_n
        params %parameters for the coeficient matrice
    end
    
    methods
        %Solving Hyperbolic systems on the form u_t=-Au_x-Bu_y-Eu
        function obj = Hypsyst2d(m, lim, order, A, B, E, params)
            default_arg('E', [])
            xlim = lim{1};
            ylim = lim{2};
            
            if length(m) == 1
                m = [m m];
            end
            
            obj.A=A;
            obj.B=B;
            obj.E=E;
            
            m_x = m(1);
            m_y = m(2);
            obj.params = params;
            
            ops_x = sbp.D2Standard(m_x,xlim,order);
            ops_y = sbp.D2Standard(m_y,ylim,order);
            
            obj.x = ops_x.x;
            obj.y = ops_y.x;
            
            obj.X = kr(obj.x,ones(m_y,1));
            obj.Y = kr(ones(m_x,1),obj.y);
            
            Aevaluated = obj.evaluateCoefficientMatrix(A, obj.X, obj.Y);
            Bevaluated = obj.evaluateCoefficientMatrix(B, obj.X, obj.Y);
            Eevaluated = obj.evaluateCoefficientMatrix(E, obj.X, obj.Y);
            
            obj.n = length(A(obj.params,0,0));
            
            I_n = eye(obj.n);I_x = speye(m_x);
            obj.I_x = I_x;
            I_y = speye(m_y);
            obj.I_y = I_y;
            
            
            D1_x = kr(I_n, ops_x.D1, I_y);
            obj.Hxi = kr(I_n, ops_x.HI, I_y);
            D1_y = kr(I_n, I_x, ops_y.D1);
            obj.Hyi = kr(I_n, I_x, ops_y.HI);
            
            obj.e_w = kr(I_n, ops_x.e_l, I_y);
            obj.e_e = kr(I_n, ops_x.e_r, I_y);
            obj.e_s = kr(I_n, I_x, ops_y.e_l);
            obj.e_n = kr(I_n, I_x, ops_y.e_r);
            
            obj.m = m;
            obj.h = [ops_x.h ops_y.h];
            obj.order = order;
            
            obj.D = -Aevaluated*D1_x-Bevaluated*D1_y-Eevaluated;
            
        end
        
        % Closure functions return the opertors applied to the own doamin to close the boundary
        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
        %       type                is a string specifying the type of boundary condition if there are several.
        %       data                is a function returning the data that should be applied at the boundary.
        function [closure, penalty] = boundary_condition(obj,boundary,type,L)
            default_arg('type','char');
            switch type
                case{'c','char'}
                    [closure,penalty] = boundary_condition_char(obj,boundary);
                case{'general'}
                    [closure,penalty] = boundary_condition_general(obj,boundary,L);
                otherwise
                    error('No such boundary condition')
            end
        end
        
        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
            error('An interface function does not exist yet');
        end
        
        function N = size(obj)
            N = obj.m;
        end
        
        function [ret] = evaluateCoefficientMatrix(obj, mat, X, Y)
            params = obj.params;
            
            if isa(mat,'function_handle')
                [rows,cols] = size(mat(params,0,0));
                matVec = mat(params,X',Y');
                matVec = sparse(matVec);
                side = max(length(X),length(Y));
            else
                matVec = mat;
                [rows,cols] = size(matVec);
                side = max(length(X),length(Y));
                cols = cols/side;
            end
            ret = cell(rows,cols);
            
            for ii = 1:rows
                for jj=1:cols
                    ret{ii,jj} = diag(matVec(ii,(jj-1)*side+1:jj*side));
                end
            end
            ret = cell2mat(ret);
        end
        
        %Characteristic boundary conditions
        function [closure, penalty] = boundary_condition_char(obj,boundary)
            params = obj.params;
            x = obj.x;
            y = obj.y;
            
            switch boundary
                case {'w','W','west'}
                    e_ = obj.e_w;
                    mat = obj.A;
                    boundPos = 'l';
                    Hi = obj.Hxi;
                    [V,Vi,D,signVec] = obj.matrixDiag(mat,x(1),y);
                    side = max(length(y));
                case {'e','E','east'}
                    e_ = obj.e_e;
                    mat = obj.A;
                    boundPos = 'r';
                    Hi = obj.Hxi;
                    [V,Vi,D,signVec] = obj.matrixDiag(mat,x(end),y);
                    side = max(length(y));
                case {'s','S','south'}
                    e_ = obj.e_s;
                    mat = obj.B;
                    boundPos = 'l';
                    Hi = obj.Hyi;
                    [V,Vi,D,signVec] = obj.matrixDiag(mat,x,y(1));
                    side = max(length(x));
                case {'n','N','north'}
                    e_ = obj.e_n;
                    mat = obj.B;
                    boundPos = 'r';
                    Hi = obj.Hyi;
                    [V,Vi,D,signVec] = obj.matrixDiag(mat,x,y(end));
                    side = max(length(x));
            end
            pos = signVec(1);
            zeroval = signVec(2);
            neg = signVec(3);
            
            switch boundPos
                case {'l'}
                    tau = sparse(obj.n*side,pos);
                    Vi_plus = Vi(1:pos,:);
                    tau(1:pos,:) = -abs(D(1:pos,1:pos));
                    closure = Hi*e_*V*tau*Vi_plus*e_';
                    penalty = -Hi*e_*V*tau*Vi_plus;
                case {'r'}
                    tau = sparse(obj.n*side,neg);
                    tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side));
                    Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:);
                    closure = Hi*e_*V*tau*Vi_minus*e_';
                    penalty = -Hi*e_*V*tau*Vi_minus;
            end
        end
        
        % General boundary condition in the form Lu=g(x)
        function [closure,penalty] = boundary_condition_general(obj,boundary,L)
            params = obj.params;
            x = obj.x;
            y = obj.y;
            
            switch boundary
                case {'w','W','west'}
                    e_ = obj.e_w;
                    mat = obj.A;
                    boundPos = 'l';
                    Hi = obj.Hxi;
                    [V,Vi,D,signVec] = obj.matrixDiag(mat,x(1),y);
                    L = obj.evaluateCoefficientMatrix(L,x(1),y);
                    side = max(length(y));
                case {'e','E','east'}
                    e_ = obj.e_e;
                    mat = obj.A;
                    boundPos = 'r';
                    Hi = obj.Hxi;
                    [V,Vi,D,signVec] = obj.matrixDiag(mat,x(end),y);
                    L = obj.evaluateCoefficientMatrix(L,x(end),y);
                    side = max(length(y));
                case {'s','S','south'}
                    e_ = obj.e_s;
                    mat = obj.B;
                    boundPos = 'l';
                    Hi = obj.Hyi;
                    [V,Vi,D,signVec] = obj.matrixDiag(mat,x,y(1));
                    L = obj.evaluateCoefficientMatrix(L,x,y(1));
                    side = max(length(x));
                case {'n','N','north'}
                    e_ = obj.e_n;
                    mat = obj.B;
                    boundPos = 'r';
                    Hi = obj.Hyi;
                    [V,Vi,D,signVec] = obj.matrixDiag(mat,x,y(end));
                    L = obj.evaluateCoefficientMatrix(L,x,y(end));      
                    side = max(length(x));
            end
            
            pos = signVec(1);
            zeroval = signVec(2);
            neg = signVec(3);
            
            switch boundPos
                case {'l'}
                    tau = sparse(obj.n*side,pos);
                    Vi_plus = Vi(1:pos,:);
                    Vi_minus = Vi(pos+zeroval+1:obj.n*side,:);
                    V_plus = V(:,1:pos);
                    V_minus = V(:,(pos+zeroval)+1:obj.n*side);
                    
                    tau(1:pos,:) = -abs(D(1:pos,1:pos));
                    R = -inv(L*V_plus)*(L*V_minus);
                    closure = Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_';
                    penalty = -Hi*e_*V*tau*inv(L*V_plus)*L;
                case {'r'}
                    tau = sparse(obj.n*side,neg);
                    tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side));
                    Vi_plus = Vi(1:pos,:);
                    Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:);
                    
                    V_plus = V(:,1:pos);
                    V_minus = V(:,(pos+zeroval)+1:obj.n*side);
                    R = -inv(L*V_minus)*(L*V_plus);
                    closure = Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_';
                    penalty = -Hi*e_*V*tau*inv(L*V_minus)*L;
            end
        end
        
        % Function that diagonalizes a symbolic matrix A as A=V*D*Vi
        % D         is a diagonal matrix with the eigenvalues on A on the diagonal sorted by their sign
        %                                    [d+       ]
        %                               D =  [   d0    ]
        %                                    [       d-]
        % signVec   is a vector specifying the number of possitive, zero and negative eigenvalues of D   
        function [V,Vi, D,signVec] = matrixDiag(obj,mat,x,y)
            params = obj.params;
            syms xs ys
            [V, D]= eig(mat(params,xs,ys));
            Vi = inv(V);
            xs = x;
            ys = y;
            
            side = max(length(x),length(y));
            Dret = zeros(obj.n,side*obj.n);
            Vret = zeros(obj.n,side*obj.n);
            Viret = zeros(obj.n,side*obj.n);
            
            for ii = 1:obj.n
                for jj = 1:obj.n
                    Dret(jj,(ii-1)*side+1:side*ii) = eval(D(jj,ii));
                    Vret(jj,(ii-1)*side+1:side*ii) = eval(V(jj,ii));
                    Viret(jj,(ii-1)*side+1:side*ii) = eval(Vi(jj,ii));
                end
            end
            
            D = sparse(Dret);
            V = sparse(Vret);
            Vi = sparse(Viret);
            V = obj.evaluateCoefficientMatrix(V,x,y);
            Vi = obj.evaluateCoefficientMatrix(Vi,x,y);
            D = obj.evaluateCoefficientMatrix(D,x,y);
            DD = diag(D);
            
            poseig = (DD>0);
            zeroeig = (DD==0);
            negeig = (DD<0);
            
            D = diag([DD(poseig); DD(zeroeig); DD(negeig)]);
            V = [V(:,poseig) V(:,zeroeig) V(:,negeig)];
            Vi = [Vi(poseig,:); Vi(zeroeig,:); Vi(negeig,:)];
            signVec = [sum(poseig),sum(zeroeig),sum(negeig)];
        end
        
    end
end