Mercurial > repos > public > sbplib
view +scheme/Hypsyst2d.m @ 301:d9860ebc3148 feature/hypsyst
HypsystCurve2D Seems to work (Converges with MMS)
author | Ylva Rydin <ylva.rydin@telia.com> |
---|---|
date | Wed, 05 Oct 2016 17:36:34 +0200 |
parents | cd30b22cee56 |
children | 9b3d7fc61a36 |
line wrap: on
line source
classdef Hypsyst2d < scheme.Scheme properties m % Number of points in each direction, possibly a vector n %size of system h % Grid spacing x,y % Grid X,Y % Values of x and y for each grid point order % Order accuracy for the approximation D % non-stabalized scheme operator A, B, E H % Discrete norm % Norms in the x and y directions Hxi,Hyi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. I_x,I_y, I_N e_w, e_e, e_s, e_n params %parameters for the coeficient matrice end methods function obj = Hypsyst2d(m, lim, order, A, B, E, params) default_arg('E', []) xlim = lim{1}; ylim = lim{2}; if length(m) == 1 m = [m m]; end obj.A=A; obj.B=B; obj.E=E; m_x = m(1); m_y = m(2); obj.params = params; ops_x = sbp.D2Standard(m_x,xlim,order); ops_y = sbp.D2Standard(m_y,ylim,order); obj.x = ops_x.x; obj.y = ops_y.x; obj.X = kr(obj.x,ones(m_y,1)); obj.Y = kr(ones(m_x,1),obj.y); Aevaluated = obj.evaluateCoefficientMatrix(A, obj.X, obj.Y); Bevaluated = obj.evaluateCoefficientMatrix(B, obj.X, obj.Y); Eevaluated = obj.evaluateCoefficientMatrix(E, obj.X, obj.Y); obj.n = length(A(obj.params,0,0)); I_n = eye(obj.n);I_x = speye(m_x); obj.I_x = I_x; I_y = speye(m_y); obj.I_y = I_y; D1_x = kr(I_n, ops_x.D1, I_y); obj.Hxi = kr(I_n, ops_x.HI, I_y); D1_y = kr(I_n, I_x, ops_y.D1); obj.Hyi = kr(I_n, I_x, ops_y.HI); obj.e_w = kr(I_n, ops_x.e_l, I_y); obj.e_e = kr(I_n, ops_x.e_r, I_y); obj.e_s = kr(I_n, I_x, ops_y.e_l); obj.e_n = kr(I_n, I_x, ops_y.e_r); obj.m=m; obj.h=[ops_x.h ops_y.h]; obj.order=order; obj.D=-Aevaluated*D1_x-Bevaluated*D1_y-Eevaluated; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. function [closure, penalty] = boundary_condition(obj,boundary,type,L) default_arg('type','char'); switch type case{'c','char'} [closure,penalty]=boundary_condition_char(obj,boundary); case{'general'} [closure,penalty]=boundary_condition_general(obj,boundary,L); otherwise error('No such boundary condition') end end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) error('An interface function does not exist yet'); end function N = size(obj) N = obj.m; end function [ret] = evaluateCoefficientMatrix(obj, mat, X, Y) params=obj.params; if isa(mat,'function_handle') [rows,cols]=size(mat(params,0,0)); matVec=mat(params,X',Y'); matVec=sparse(matVec); side=max(length(X),length(Y)); else matVec=mat; [rows,cols]=size(matVec); side=max(length(X),length(Y)); cols=cols/side; end ret=kron(ones(rows,cols),speye(side)); for ii=1:rows for jj=1:cols ret((ii-1)*side+1:ii*side,(jj-1)*side+1:jj*side)=diag(matVec(ii,(jj-1)*side+1:jj*side)); end end end function [closure, penalty]=boundary_condition_char(obj,boundary) params=obj.params; x=obj.x; y=obj.y; switch boundary case {'w','W','west'} e_=obj.e_w; mat=obj.A; boundPos='l'; Hi=obj.Hxi; [V,Vi,D,signVec]=obj.matrixDiag(mat,x(1),y); side=max(length(y)); case {'e','E','east'} e_=obj.e_e; mat=obj.A; boundPos='r'; Hi=obj.Hxi; [V,Vi,D,signVec]=obj.matrixDiag(mat,x(end),y); side=max(length(y)); case {'s','S','south'} e_=obj.e_s; mat=obj.B; boundPos='l'; Hi=obj.Hyi; [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(1)); side=max(length(x)); case {'n','N','north'} e_=obj.e_n; mat=obj.B; boundPos='r'; Hi=obj.Hyi; [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(end)); side=max(length(x)); end pos=signVec(1); zeroval=signVec(2); neg=signVec(3); switch boundPos case {'l'} tau=sparse(obj.n*side,pos); Vi_plus=Vi(1:pos,:); tau(1:pos,:)=-abs(D(1:pos,1:pos)); closure=Hi*e_*V*tau*Vi_plus*e_'; penalty=-Hi*e_*V*tau*Vi_plus; case {'r'} tau=sparse(obj.n*side,neg); tau((pos+zeroval)+1:obj.n*side,:)=-abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); Vi_minus=Vi((pos+zeroval)+1:obj.n*side,:); closure=Hi*e_*V*tau*Vi_minus*e_'; penalty=-Hi*e_*V*tau*Vi_minus; end end function [closure,penalty]=boundary_condition_general(obj,boundary,L) params=obj.params; x=obj.x; y=obj.y; switch boundary case {'w','W','west'} e_=obj.e_w; mat=obj.A; boundPos='l'; Hi=obj.Hxi; [V,Vi,D,signVec]=obj.matrixDiag(mat,x(1),y); L=obj.evaluateCoefficientMatrix(L,x(1),y); side=max(length(y)); case {'e','E','east'} e_=obj.e_e; mat=obj.A; boundPos='r'; Hi=obj.Hxi; [V,Vi,D,signVec]=obj.matrixDiag(mat,x(end),y); L=obj.evaluateCoefficientMatrix(L,x(end),y); side=max(length(y)); case {'s','S','south'} e_=obj.e_s; mat=obj.B; boundPos='l'; Hi=obj.Hyi; [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(1)); L=obj.evaluateCoefficientMatrix(L,x,y(1)); side=max(length(x)); case {'n','N','north'} e_=obj.e_n; mat=obj.B; boundPos='r'; Hi=obj.Hyi; [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(end)); L=obj.evaluateCoefficientMatrix(L,x,y(end)); side=max(length(x)); end pos=signVec(1); zeroval=signVec(2); neg=signVec(3); switch boundPos case {'l'} tau=sparse(obj.n*side,pos); Vi_plus=Vi(1:pos,:); Vi_minus=Vi(pos+zeroval+1:obj.n*side,:); V_plus=V(:,1:pos); V_minus=V(:,(pos+zeroval)+1:obj.n*side); tau(1:pos,:)=-abs(D(1:pos,1:pos)); R=-inv(L*V_plus)*(L*V_minus); closure=Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; penalty=-Hi*e_*V*tau*inv(L*V_plus)*L; case {'r'} tau=sparse(obj.n*side,neg); tau((pos+zeroval)+1:obj.n*side,:)=-abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); Vi_plus=Vi(1:pos,:); Vi_minus=Vi((pos+zeroval)+1:obj.n*side,:); V_plus=V(:,1:pos); V_minus=V(:,(pos+zeroval)+1:obj.n*side); R=-inv(L*V_minus)*(L*V_plus); closure=Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_'; penalty=-Hi*e_*V*tau*inv(L*V_minus)*L; end end function [V,Vi, D,signVec]=matrixDiag(obj,mat,x,y) params=obj.params; syms xs ys [V, D]=eig(mat(params,xs,ys)); xs=x; ys=y; side=max(length(x),length(y)); Dret=zeros(obj.n,side*obj.n); Vret=zeros(obj.n,side*obj.n); for ii=1:obj.n for jj=1:obj.n Dret(jj,(ii-1)*side+1:side*ii)=eval(D(jj,ii)); Vret(jj,(ii-1)*side+1:side*ii)=eval(V(jj,ii)); end end D=sparse(Dret); V=sparse(Vret); V=obj.evaluateCoefficientMatrix(V,x,y); D=obj.evaluateCoefficientMatrix(D,x,y); DD=diag(D); poseig=(DD>0); zeroeig=(DD==0); negeig=(DD<0); D=diag([DD(poseig); DD(zeroeig); DD(negeig)]); V=[V(:,poseig) V(:,zeroeig) V(:,negeig)]; Vi=inv(V); signVec=[sum(poseig),sum(zeroeig),sum(negeig)]; end end end