view +time/CdiffNonlin.m @ 958:72cd29107a9a feature/poroelastic

Temporary changes in multiblock.DiffOp. Change traction operators in Elastic2dvariable to be true boundary operators. But adjoint FD conv test fails for dirichlet BC so need to debug!
author Martin Almquist <malmquist@stanford.edu>
date Wed, 05 Dec 2018 18:58:10 -0800
parents d1f9dd55a2b0
children b5e5b195da1e
line wrap: on
line source

classdef CdiffNonlin < time.Timestepper
    properties
        D
        E
        S
        k
        t
        v
        v_prev
        n
    end


    methods
        function obj = CdiffNonlin(D, E, S, k, t0,n0, v, v_prev)
            m = size(D(v),1);
            default_arg('E',0);
            default_arg('S',0);

            if isnumeric(S)
                S = @(v,t)S;
            end

            if isnumeric(E)
                E = @(v)E;
            end


            % m = size(D,1);
            % default_arg('E',sparse(m,m));
            % default_arg('S',sparse(m,1));

            obj.D = D;
            obj.E = E;
            obj.S = S;
            obj.k = k;
            obj.t = t0;
            obj.n = n0;
            obj.v = v;
            obj.v_prev = v_prev;
        end

        function [v,t] = getV(obj)
            v = obj.v;
            t = obj.t;
        end

        function [vt,t] = getVt(obj)
            vt = (obj.v-obj.v_prev)/obj.k; % Could be improved using u_tt = f(u))
            t = obj.t;
        end

        function obj = step(obj)
            D = obj.D(obj.v);
            E = obj.E(obj.v);
            S = obj.S(obj.v,obj.t);

            m = size(D,1);
            I = speye(m);

            %% Calculate for which indices we need to solve system of equations
            [rows,cols] = find(E);
            j = union(rows,cols);
            i = setdiff(1:m,j);


            %% Calculate matrices need for the timestep
            % Before optimization:  A =  1/k^2 * I - 1/(2*k)*E;
            k = obj.k;

            Aj = 1/k^2 * I(j,j) - 1/(2*k)*E(j,j);
            B =  2/k^2 * I + D;
            C = -1/k^2 * I - 1/(2*k)*E;

            %% Take the timestep
            v = obj.v;
            v_prev = obj.v_prev;

            % Want to solve the seq A*v_next = b where
            b = (B*v + C*v_prev + S);

            % Before optimization:  obj.v = A\b;

            obj.v(i) = k^2*b(i);
            obj.v(j) =  Aj\b(j);

            obj.v_prev = v;

            %% Update state of the timestepper
            obj.t = obj.t + obj.k;
            obj.n = obj.n + 1;
        end
    end
end