view +sbp/+implementations/d4_lonely_6_3.m @ 958:72cd29107a9a feature/poroelastic

Temporary changes in multiblock.DiffOp. Change traction operators in Elastic2dvariable to be true boundary operators. But adjoint FD conv test fails for dirichlet BC so need to debug!
author Martin Almquist <malmquist@stanford.edu>
date Wed, 05 Dec 2018 18:58:10 -0800
parents b19e142fcae1
children
line wrap: on
line source

function [H, HI, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_6_3(m,h)
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %%% 6:te ordn. SBP Finita differens         %%%
    %%% operatorer med diagonal norm            %%%
    %%% Extension to variable koeff             %%%
    %%%                                         %%%
    %%% H           (Normen)                    %%%
    %%% D1=H^(-1)Q  (approx f?rsta derivatan)   %%%
    %%% D2          (approx andra derivatan)    %%%
    %%% D2=HI*(R+C*D*S                          %%%
    %%%                                         %%%
    %%% R=-D1'*H*C*D1-RR                        %%%
    %%%                                         %%%
    %%% RR ?r dissipation)                      %%%
    %%% Dissipationen uppbyggd av D4:           %%%
    %%% DI=D4*B*H*D4                            %%%
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % H?r med 7 RP ist?llet f?r 8 f?r D4 operatorn, dock samma randderivator
    % Denna ?r noggrannare, och har 2a ordningens randdslutning och b?r ge 6te
    % ordningens konvergens. Hade 2 fria parametrar att optimera

    % Norm
    Hv = ones(m,1);
    Hv(1:7) = [0.414837907e9/0.1191965760e10, 0.475278367e9/0.397321920e9, 0.13872751e8/0.12416310e8, 0.346739027e9/0.595982880e9, 0.560227469e9/0.397321920e9, 0.322971631e9/0.397321920e9, 0.616122491e9/0.595982880e9];
    Hv(m-6:m) = rot90(Hv(1:7),2);
    Hv = h*Hv;
    H = spdiag(Hv, 0);
    HI = spdiag(1./Hv, 0);


    % Boundary operators
    e_l = sparse(m,1);
    e_l(1) = 1;
    e_r = rot90(e_l, 2);

    d1_l = sparse(m,1);
    d1_l(1:6) = [-0.137e3/0.60e2 5 -5 0.10e2/0.3e1 -0.5e1/0.4e1 0.1e1/0.5e1;]/h;
    d1_r = -rot90(d1_l, 2);

    d2_l = sparse(m,1);
    d2_l(1:6) = [0.15e2/0.4e1 -0.77e2/0.6e1 0.107e3/0.6e1 -13 0.61e2/0.12e2 -0.5e1/0.6e1;]/h^2;
    d2_r = rot90(d2_l, 2);

    d3_l = sparse(m,1);
    d3_l(1:6) = [-0.17e2/0.4e1 0.71e2/0.4e1 -0.59e2/0.2e1 0.49e2/0.2e1 -0.41e2/0.4e1 0.7e1/0.4e1;]/h^3;
    d3_r = -rot90(d3_l, 2);


    % Fourth derivative, 1th order accurate at first 8 boundary points
    stencil = [7/240, -2/5, 169/60, -122/15, 91/8, -122/15, 169/60, -2/5, 7/240];
    diags = -4:4;
    M4 = stripeMatrix(stencil, diags, m);

    M4_U = [
        0.1399708478939e13/0.263487168000e12 -0.13482796013041e14/0.834376032000e12 0.344344095859e12/0.17565811200e11 -0.3166261424681e13/0.250312809600e12 0.1508605165681e13/0.333750412800e12 -0.486270829441e12/0.834376032000e12 -0.221976356359e12/0.5006256192000e13;
        -0.13482796013041e14/0.834376032000e12 0.7260475818391e13/0.139062672000e12 -0.27224036353e11/0.406022400e9 0.1847477458951e13/0.41718801600e11 -0.848984558161e12/0.55625068800e11 0.247494925991e12/0.139062672000e12 0.165585445559e12/0.834376032000e12;
        0.344344095859e12/0.17565811200e11 -0.27224036353e11/0.406022400e9 0.2044938640393e13/0.22250027520e11 -0.1071086785417e13/0.16687520640e11 0.502199537033e12/0.22250027520e11 -0.143589154441e12/0.55625068800e11 -0.88181965559e11/0.333750412800e12;
        -0.3166261424681e13/0.250312809600e12 0.1847477458951e13/0.41718801600e11 -0.1071086785417e13/0.16687520640e11 0.628860435593e12/0.12515640480e11 -0.73736245829e11/0.3337504128e10 0.195760572271e12/0.41718801600e11 -0.81156046361e11/0.250312809600e12;
        0.1508605165681e13/0.333750412800e12 -0.848984558161e12/0.55625068800e11 0.502199537033e12/0.22250027520e11 -0.73736245829e11/0.3337504128e10 0.76725285869e11/0.4450005504e10 -0.3912429433e10/0.406022400e9 0.53227370659e11/0.17565811200e11;
        -0.486270829441e12/0.834376032000e12 0.247494925991e12/0.139062672000e12 -0.143589154441e12/0.55625068800e11 0.195760572271e12/0.41718801600e11 -0.3912429433e10/0.406022400e9 0.1699707221791e13/0.139062672000e12 -0.6959018412841e13/0.834376032000e12;
        -0.221976356359e12/0.5006256192000e13 0.165585445559e12/0.834376032000e12 -0.88181965559e11/0.333750412800e12 -0.81156046361e11/0.250312809600e12 0.53227370659e11/0.17565811200e11 -0.6959018412841e13/0.834376032000e12 0.3012195053939e13/0.263487168000e12;
    ];

    M4(1:7,1:7) = M4_U;
    M4(m-6:m,m-6:m) = rot90(M4_U, 2);
    M4 = 1/h^3*M4;

    D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r');
end