view +sbp/+implementations/d1_noneq_8.m @ 958:72cd29107a9a feature/poroelastic

Temporary changes in multiblock.DiffOp. Change traction operators in Elastic2dvariable to be true boundary operators. But adjoint FD conv test fails for dirichlet BC so need to debug!
author Martin Almquist <malmquist@stanford.edu>
date Wed, 05 Dec 2018 18:58:10 -0800
parents f7ac3cd6eeaa
children 4cb627c7fb90
line wrap: on
line source

function [D1,H,x,h] = d1_noneq_8(N,L)

% L: Domain length
% N: Number of grid points
if(nargin < 2)
    L = 1;
end

if(N<16)
    error('Operator requires at least 16 grid points');
end

% BP: Number of boundary points
% m:  Number of nonequidistant spacings
% order: Accuracy of interior stencil
BP = 8;
m = 4;
order = 8;

%%%% Non-equidistant grid points %%%%%
x0 =  0.0000000000000e+00;
x1 =  3.8118550247622e-01;
x2 =  1.1899550868338e+00;
x3 =  2.2476300175641e+00;
x4 =  3.3192851303204e+00;
x5 =  4.3192851303204e+00;
x6 =  5.3192851303204e+00;
x7 =  6.3192851303204e+00;
x8 =  7.3192851303204e+00;

xb = sparse(m+1,1);
for i = 0:m
    xb(i+1) = eval(['x' num2str(i)]);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Compute h %%%%%%%%%%
h = L/(2*xb(end) + N-1-2*m);
%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Define grid %%%%%%%%
x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ];
%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Norm matrix %%%%%%%%
P = sparse(BP,1);
%#ok<*NASGU>
P0 =  1.0758368078310e-01;
P1 =  6.1909685107891e-01;
P2 =  9.6971176519117e-01;
P3 =  1.1023441350947e+00;
P4 =  1.0244688965833e+00;
P5 =  9.9533550116831e-01;
P6 =  1.0008236941028e+00;
P7 =  9.9992060631812e-01;

for i = 0:BP-1
    P(i+1) = eval(['P' num2str(i)]);
end

H = ones(N,1);
H(1:BP) = P;
H(end-BP+1:end) = flip(P);
H = spdiags(h*H,0,N,N);
%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Q matrix %%%%%%%%%%%

% interior stencil
switch order
    case 2
        d = [-1/2,0,1/2];
    case 4
        d = [1/12,-2/3,0,2/3,-1/12];
    case 6
        d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60];
    case 8
        d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280];
    case 10
        d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260];
    case 12
        d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544];
end
d = repmat(d,N,1);
Q = spdiags(d,-order/2:order/2,N,N);

% Boundaries
Q0_0 = -5.0000000000000e-01;
Q0_1 =  6.7284756079369e-01;
Q0_2 = -2.5969732837062e-01;
Q0_3 =  1.3519390385721e-01;
Q0_4 = -6.9678474730984e-02;
Q0_5 =  2.6434024071371e-02;
Q0_6 = -5.5992311465618e-03;
Q0_7 =  4.9954552590464e-04;
Q0_8 =  0.0000000000000e+00;
Q0_9 =  0.0000000000000e+00;
Q0_10 =  0.0000000000000e+00;
Q0_11 =  0.0000000000000e+00;
Q1_0 = -6.7284756079369e-01;
Q1_1 =  0.0000000000000e+00;
Q1_2 =  9.4074021172233e-01;
Q1_3 = -4.0511642426516e-01;
Q1_4 =  1.9369192209331e-01;
Q1_5 = -6.8638079843479e-02;
Q1_6 =  1.3146457241484e-02;
Q1_7 = -9.7652615479254e-04;
Q1_8 =  0.0000000000000e+00;
Q1_9 =  0.0000000000000e+00;
Q1_10 =  0.0000000000000e+00;
Q1_11 =  0.0000000000000e+00;
Q2_0 =  2.5969732837062e-01;
Q2_1 = -9.4074021172233e-01;
Q2_2 =  0.0000000000000e+00;
Q2_3 =  9.4316393361096e-01;
Q2_4 = -3.5728039257451e-01;
Q2_5 =  1.1266686855013e-01;
Q2_6 = -1.8334941452280e-02;
Q2_7 =  8.2741521740941e-04;
Q2_8 =  0.0000000000000e+00;
Q2_9 =  0.0000000000000e+00;
Q2_10 =  0.0000000000000e+00;
Q2_11 =  0.0000000000000e+00;
Q3_0 = -1.3519390385721e-01;
Q3_1 =  4.0511642426516e-01;
Q3_2 = -9.4316393361096e-01;
Q3_3 =  0.0000000000000e+00;
Q3_4 =  8.7694387866575e-01;
Q3_5 = -2.4698058719506e-01;
Q3_6 =  4.7291642094198e-02;
Q3_7 = -4.0135203618880e-03;
Q3_8 =  0.0000000000000e+00;
Q3_9 =  0.0000000000000e+00;
Q3_10 =  0.0000000000000e+00;
Q3_11 =  0.0000000000000e+00;
Q4_0 =  6.9678474730984e-02;
Q4_1 = -1.9369192209331e-01;
Q4_2 =  3.5728039257451e-01;
Q4_3 = -8.7694387866575e-01;
Q4_4 =  0.0000000000000e+00;
Q4_5 =  8.1123946853807e-01;
Q4_6 = -2.0267150541446e-01;
Q4_7 =  3.8680398901392e-02;
Q4_8 = -3.5714285714286e-03;
Q4_9 =  0.0000000000000e+00;
Q4_10 =  0.0000000000000e+00;
Q4_11 =  0.0000000000000e+00;
Q5_0 = -2.6434024071371e-02;
Q5_1 =  6.8638079843479e-02;
Q5_2 = -1.1266686855013e-01;
Q5_3 =  2.4698058719506e-01;
Q5_4 = -8.1123946853807e-01;
Q5_5 =  0.0000000000000e+00;
Q5_6 =  8.0108544742793e-01;
Q5_7 = -2.0088756283071e-01;
Q5_8 =  3.8095238095238e-02;
Q5_9 = -3.5714285714286e-03;
Q5_10 =  0.0000000000000e+00;
Q5_11 =  0.0000000000000e+00;
Q6_0 =  5.5992311465618e-03;
Q6_1 = -1.3146457241484e-02;
Q6_2 =  1.8334941452280e-02;
Q6_3 = -4.7291642094198e-02;
Q6_4 =  2.0267150541446e-01;
Q6_5 = -8.0108544742793e-01;
Q6_6 =  0.0000000000000e+00;
Q6_7 =  8.0039405922650e-01;
Q6_8 = -2.0000000000000e-01;
Q6_9 =  3.8095238095238e-02;
Q6_10 = -3.5714285714286e-03;
Q6_11 =  0.0000000000000e+00;
Q7_0 = -4.9954552590464e-04;
Q7_1 =  9.7652615479254e-04;
Q7_2 = -8.2741521740941e-04;
Q7_3 =  4.0135203618880e-03;
Q7_4 = -3.8680398901392e-02;
Q7_5 =  2.0088756283071e-01;
Q7_6 = -8.0039405922650e-01;
Q7_7 =  0.0000000000000e+00;
Q7_8 =  8.0000000000000e-01;
Q7_9 = -2.0000000000000e-01;
Q7_10 =  3.8095238095238e-02;
Q7_11 = -3.5714285714286e-03;
for i = 1:BP
    for j = 1:BP
        Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]);
        Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]);
    end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Difference operator %%
D1 = H\Q;
%%%%%%%%%%%%%%%%%%%%%%%%%%%