view +parametrization/old/triang_plot_interp.m @ 958:72cd29107a9a feature/poroelastic

Temporary changes in multiblock.DiffOp. Change traction operators in Elastic2dvariable to be true boundary operators. But adjoint FD conv test fails for dirichlet BC so need to debug!
author Martin Almquist <malmquist@stanford.edu>
date Wed, 05 Dec 2018 18:58:10 -0800
parents 3a3cf386bb7e
children
line wrap: on
line source

% Plots a transfinite interpolation in x,y space using nu and nv curves along u and v axes.






% Plots a interp of a triangle where one the interpolation is from a square
% with one side collapsed to
function h = triang_plot_interp_kindaworking(S,n)
    u = linspace(0,1,n);
    v = linspace(0,1,n);

    m = 100;
    m = 20;

    Xl_curves = cell(n,1);
    Xr_curves = cell(n,1);
    Y_curves = cell(n,1);


    function u = wierdness(v,d,N)
        if N == 0
            u = 0;
        else
            u = N*d./(1-v);
        end
    end


    %Y curves
    t = linspace(0,1,m);
    for i = 1:n
        x = []; y = [];
        for j = 1:length(t)
            [x(j),y(j)] = S(t(j),v(i));
        end
        Y_curves{i} = [x', y'];
    end


    % Right and left X curves
    t = linspace(0,1,m);
    d = u(2);
    for i = 1:n
        xl = []; yl = [];
        xr = []; yr = [];
        N = i-1;
        t = linspace(0,1-N*d,m);
        for j = 1:length(t)
            w = wierdness(t(j),d,N);
            [xr(j),yr(j)] = S(w,t(j));
            [xl(j),yl(j)] = S(1-w,t(j));
        end
        Xl_curves{i} = [xl', yl'];
        Xr_curves{i} = [xr', yr'];
    end

    for i = 1:n-1
        line(Xl_curves{i}(:,1),Xl_curves{i}(:,2))
        line(Xr_curves{i}(:,1),Xr_curves{i}(:,2))
        line(Y_curves{i}(:,1),Y_curves{i}(:,2))
    end
end




function h = triang_plot_interp_nonworking(S,n)

    u = linspace(0,1,n);
    v = linspace(0,1,n);

    m = 100;

    X_curves = cell(n-1,1);
    Y_curves = cell(n-1,1);
    K_curves = cell(n-1,1);


    t = linspace(0,1,m);
    for i = 1:n-1
        x = []; y = [];
        for j = find(t+u(i) <= 1)
            [x(j),y(j)] = S(u(i),t(j));
        end
        X_curves{i} = [x', y'];
    end

    for i = 1:n-1
        x = []; y = [];
        for j = find(t+v(i) <= 1)
            [x(j),y(j)] = S(t(j),v(i));
        end
        Y_curves{i} = [x', y'];
    end

    for i = 2:n
        x = []; y = [];
        for j = find(t<u(i))
            [x(j),y(j)] = S(t(j), u(i)-t(j));
        end
        K_curves{i-1} = [x', y'];
    end

    for i = 1:n-1
        line(X_curves{i}(:,1),X_curves{i}(:,2))
        line(Y_curves{i}(:,1),Y_curves{i}(:,2))
        line(K_curves{i}(:,1),K_curves{i}(:,2))
    end

    h = -1;
    % h = plot(X_curves{:},Y_curves{:},K_curves{:});
end