view +parametrization/old/curve_discretise.m @ 958:72cd29107a9a feature/poroelastic

Temporary changes in multiblock.DiffOp. Change traction operators in Elastic2dvariable to be true boundary operators. But adjoint FD conv test fails for dirichlet BC so need to debug!
author Martin Almquist <malmquist@stanford.edu>
date Wed, 05 Dec 2018 18:58:10 -0800
parents 81e0ead29431
children
line wrap: on
line source

% Discretises the curve g with the smallest number of points such that all segments
% are shorter than h. If do_plot is true the points of the discretisation and
% the normals of the curve in those points are plotted.
%
%   [t,p,d] = curve_discretise(g,h,do_plot)
%
%   t is a vector of input values to g.
%   p is a cector of points.
%   d are the length of the segments.
function [t,p,d] = curve_discretise(g,h,do_plot)
    default_arg('do_plot',false)

    n = 10;

    [t,p,d] = curve_discretise_n(g,n);

    % ni = 0;
    while any(d>h)
        [t,p,d] = curve_discretise_n(g,n);
        n = ceil(n*d(1)/h);
        % ni = ni+1;
    end

    % nj = 0;
    while all(d<h)
        [t,p,d] = curve_discretise_n(g,n);
        n = n-1;
        % nj = nj+1;
    end
    [t,p,d] = curve_discretise_n(g,n+1);

    % fprintf('ni = %d, nj = %d\n',ni,nj);

    if do_plot
        fprintf('n:%d  max: %f min: %f\n', n, max(d),min(d));
        p = parametrization.map_curve(g,t);
        figure
        show(g,t,h);
    end

end

function [t,p,d] = curve_discretise_n(g,n)
    t = linspace(0,1,n);
    t = equalize_d(g,t);
    d = D(g,t);
    p = parametrization.map_curve(g,t);
end

function d = D(g,t)
    p = parametrization.map_curve(g,t);

    d = zeros(1,length(t)-1);
    for i = 1:length(d)
        d(i) = norm(p(:,i) - p(:,i+1));
    end
end

function t = equalize_d(g,t)
    d = D(g,t);
    v = d-mean(d);
    while any(abs(v)>0.01*mean(d))
        dt = t(2:end)-t(1:end-1);
        t(2:end) = t(2:end) - cumsum(dt.*v./d);

        t = t/t(end);
        d = D(g,t);
        v = d-mean(d);
    end
end


function show(g,t,hh)
    p = parametrization.map_curve(g,t);



    h = parametrization.plot_curve(g);
    h.LineWidth = 2;
    axis equal
    hold on
    h = plot(p(1,:),p(2,:),'.');
    h.Color = [0.8500 0.3250 0.0980];
    h.MarkerSize = 24;
    hold off

    n = parametrization.curve_normals(g,t);
    hold on
    for  i = 1:length(t)
        p0 = p(:,i);
        p1 = p0 + hh*n(:,i);
        l = [p0, p1];
        h = plot(l(1,:),l(2,:));
        h.Color = [0.8500 0.3250 0.0980];
    end

end