view +grid/bspline.m @ 958:72cd29107a9a feature/poroelastic

Temporary changes in multiblock.DiffOp. Change traction operators in Elastic2dvariable to be true boundary operators. But adjoint FD conv test fails for dirichlet BC so need to debug!
author Martin Almquist <malmquist@stanford.edu>
date Wed, 05 Dec 2018 18:58:10 -0800
parents 4f7930d2d2c4
children
line wrap: on
line source

% Calculates a D dimensional p-order bspline at t with knots T and control points P.
%  T = [t0 t1 t2 ... tm] is a 1 x (m+1) vector with non-decresing elements and t0 = 0 tm = 1.
%  P = [P0 P1 P2 ... Pn] is a D x (n+1) matrix.

% knots p+1 to m-p-1 are the internal knots

% Implemented from: http://mathworld.wolfram.com/B-Spline.html
function C = bspline(t,p,P,T)
    m = length(T) - 1;
    n = size(P,2) - 1;
    D = size(P,1);

    assert(p == m - n - 1);

    C = zeros(D,length(t));

    for i = 0:n
        for k = 1:D
            C(k,:) = C(k,:) + P(k,1+i)*B(i,p,t,T);
        end
    end

    % Curve not defined for t = 1 ? Ugly fix:
    I = find(t == 1);
    C(:,I) = repmat(P(:,end),[1,length(I)]);
end

function o = B(i, j, t, T)
    if j == 0
        o = T(1+i) <= t & t < T(1+i+1);
        return
    end

    if T(1+i+j)-T(1+i) ~= 0
        a = (t-T(1+i))/(T(1+i+j)-T(1+i));
    else
        a = t*0;
    end

    if T(1+i+j+1)-T(1+i+1) ~= 0
        b = (T(1+i+j+1)-t)/(T(1+i+j+1)-T(1+i+1));
    else
        b = t*0;
    end

    o = a.*B(i, j-1, t, T) + b.*B(i+1, j-1, t, T);
end