Mercurial > repos > public > sbplib
view +scheme/Wave2dCurve.m @ 0:48b6fb693025
Initial commit.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 17 Sep 2015 10:12:50 +0200 |
parents | |
children | 5f6b0b6a012b |
line wrap: on
line source
classdef Wave2dCurve < scheme.Scheme properties m % Number of points in each direction, possibly a vector h % Grid spacing u,v % Grid x,y % Values of x and y for each grid point X,Y % Grid point locations as matrices order % Order accuracy for the approximation D % non-stabalized scheme operator M % Derivative norm c J, Ji a11, a12, a22 H % Discrete norm Hi H_u, H_v % Norms in the x and y directions Hu,Hv % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. Hi_u, Hi_v Hiu, Hiv e_w, e_e, e_s, e_n du_w, dv_w du_e, dv_e du_s, dv_s du_n, dv_n gamm_u, gamm_v end methods function obj = Wave2dCurve(m,ti,order,c,opSet) default_arg('opSet',@sbp.Variable); if length(m) == 1 m = [m m]; end m_u = m(1); m_v = m(2); m_tot = m_u*m_v; [u, h_u] = util.get_grid(0, 1, m_u); [v, h_v] = util.get_grid(0, 1, m_v); % Operators ops_u = opSet(m_u,h_u,order); ops_v = opSet(m_v,h_v,order); I_u = speye(m_u); I_v = speye(m_v); D1_u = sparse(ops_u.derivatives.D1); D2_u = ops_u.derivatives.D2; H_u = sparse(ops_u.norms.H); Hi_u = sparse(ops_u.norms.HI); % M_u = sparse(ops_u.norms.M); e_l_u = sparse(ops_u.boundary.e_1); e_r_u = sparse(ops_u.boundary.e_m); d1_l_u = sparse(ops_u.boundary.S_1); d1_r_u = sparse(ops_u.boundary.S_m); D1_v = sparse(ops_v.derivatives.D1); D2_v = ops_v.derivatives.D2; H_v = sparse(ops_v.norms.H); Hi_v = sparse(ops_v.norms.HI); % M_v = sparse(ops_v.norms.M); e_l_v = sparse(ops_v.boundary.e_1); e_r_v = sparse(ops_v.boundary.e_m); d1_l_v = sparse(ops_v.boundary.S_1); d1_r_v = sparse(ops_v.boundary.S_m); % Metric derivatives [X,Y] = ti.map(u,v); [x_u,x_v] = gridDerivatives(X,D1_u,D1_v); [y_u,y_v] = gridDerivatives(Y,D1_u,D1_v); J = x_u.*y_v - x_v.*y_u; a11 = 1./J .* (x_v.^2 + y_v.^2); %% GÖR SOM MATRISER a12 = -1./J .* (x_u.*x_v + y_u.*y_v); a22 = 1./J .* (x_u.^2 + y_u.^2); lambda = 1/2 * (a11 + a22 - sqrt((a11-a22).^2 + 4*a12.^2)); dof_order = reshape(1:m_u*m_v,m_v,m_u); Duu = sparse(m_tot); Dvv = sparse(m_tot); for i = 1:m_v D = D2_u(a11(i,:)); p = dof_order(i,:); Duu(p,p) = D; end for i = 1:m_u D = D2_v(a22(:,i)); p = dof_order(:,i); Dvv(p,p) = D; end L_12 = spdiags(a12(:),0,m_tot,m_tot); Du = kr(D1_u,I_v); Dv = kr(I_u,D1_v); Duv = Du*L_12*Dv; Dvu = Dv*L_12*Du; obj.H = kr(H_u,H_v); obj.Hi = kr(Hi_u,Hi_v); obj.Hu = kr(H_u,I_v); obj.Hv = kr(I_u,H_v); obj.Hiu = kr(Hi_u,I_v); obj.Hiv = kr(I_u,Hi_v); % obj.M = kr(M_u,H_v)+kr(H_u,M_v); obj.e_w = kr(e_l_u,I_v); obj.e_e = kr(e_r_u,I_v); obj.e_s = kr(I_u,e_l_v); obj.e_n = kr(I_u,e_r_v); obj.du_w = kr(d1_l_u,I_v); obj.dv_w = (obj.e_w'*Dv)'; obj.du_e = kr(d1_r_u,I_v); obj.dv_e = (obj.e_e'*Dv)'; obj.du_s = (obj.e_s'*Du)'; obj.dv_s = kr(I_u,d1_l_v); obj.du_n = (obj.e_n'*Du)'; obj.dv_n = kr(I_u,d1_r_v); obj.m = m; obj.h = [h_u h_v]; obj.order = order; obj.c = c; obj.J = spdiags(J(:),0,m_tot,m_tot); obj.Ji = spdiags(1./J(:),0,m_tot,m_tot); obj.a11 = a11; obj.a12 = a12; obj.a22 = a22; obj.D = obj.Ji*c^2*(Duu + Duv + Dvu + Dvv); obj.u = u; obj.v = v; obj.X = X; obj.Y = Y; obj.x = X(:); obj.y = Y(:); obj.gamm_u = h_u*ops_u.borrowing.M.S; obj.gamm_v = h_v*ops_v.borrowing.M.S; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj,boundary,type,data) default_arg('type','neumann'); default_arg('data',0); [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv] = obj.get_boundary_ops(boundary); switch type % Dirichlet boundary condition case {'D','d','dirichlet'} error('not implemented') alpha = obj.alpha; % tau1 < -alpha^2/gamma tuning = 1.1; tau1 = -tuning*alpha/gamm; tau2 = s*alpha; p = tau1*e + tau2*d; closure = halfnorm_inv*p*e'; pp = halfnorm_inv*p; switch class(data) case 'double' penalty = pp*data; case 'function_handle' penalty = @(t)pp*data(t); otherwise error('Weird data argument!') end % Neumann boundary condition case {'N','n','neumann'} c = obj.c; a_n = spdiags(coeff_n,0,length(coeff_n),length(coeff_n)); a_t = spdiags(coeff_t,0,length(coeff_t),length(coeff_t)); d = (a_n * d_n' + a_t*d_t')'; tau1 = -s; tau2 = 0; tau = c.^2 * obj.Ji*(tau1*e + tau2*d); closure = halfnorm_inv*tau*d'; pp = halfnorm_inv*tau; switch class(data) case 'double' penalty = pp*data; case 'function_handle' penalty = @(t)pp*data(t); otherwise error('Weird data argument!') end % Unknown, boundary condition otherwise error('No such boundary condition: type = %s',type); end end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain [e_u, d_n_u, d_t_u, coeff_n_u, coeff_t_u, s_u, gamm_u, halfnorm_inv_u_n, halfnorm_inv_u_t, halfnorm_u_t] = obj.get_boundary_ops(boundary); [e_v, d_n_v, d_t_v, coeff_n_v, coeff_t_v, s_v, gamm_v, halfnorm_inv_v_n, halfnorm_inv_v_t, halfnorm_v_t] = neighbour_scheme.get_boundary_ops(boundary); F_u = s_u * a_n_u * d_n_u' + s_u * a_t_u*d_t_u'; F_v = s_v * a_n_v * d_n_v' + s_v * a_t_v*d_t_v'; tau = 111111111111111111111111111111; sig1 = 1/2; sig2 = -1/2; penalty_parameter_1 = s_u*halfnorm_inv_u_n*(tau + sig1*halfnorm_inv_u_t*F_u'*halfnorm_u_t)*e_u; penalty_parameter_2 = halfnorm_inv_u_n * sig2 * e_u; tuning = 1.2; alpha_u = obj.alpha; alpha_v = neighbour_scheme.alpha; % tau1 < -(alpha_u/gamm_u + alpha_v/gamm_v) tau1 = -(alpha_u/gamm_u + alpha_v/gamm_v) * tuning; tau2 = s_u*1/2*alpha_u; sig1 = s_u*(-1/2); sig2 = 0; tau = tau1*e_u + tau2*d_u; sig = sig1*e_u + sig2*d_u; closure = halfnorm_inv*( tau*e_u' + sig*alpha_u*d_u'); penalty = halfnorm_inv*(-tau*e_v' - sig*alpha_v*d_v'); end % Ruturns the boundary ops and sign for the boundary specified by the string boundary. % The right boundary is considered the positive boundary function [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t] = get_boundary_ops(obj,boundary) switch boundary case 'w' e = obj.e_w; d_n = obj.du_w; d_t = obj.dv_w; s = -1; coeff_n = obj.a11(:,1); coeff_t = obj.a12(:,1); case 'e' e = obj.e_e; d_n = obj.du_e; d_t = obj.dv_e; s = 1; coeff_n = obj.a11(:,end); coeff_t = obj.a12(:,end); case 's' e = obj.e_s; d_n = obj.dv_s; d_t = obj.du_s; s = -1; coeff_n = obj.a22(1,:)'; coeff_t = obj.a12(1,:)'; case 'n' e = obj.e_n; d_n = obj.dv_n; d_t = obj.du_n; s = 1; coeff_n = obj.a22(end,:)'; coeff_t = obj.a12(end,:)'; otherwise error('No such boundary: boundary = %s',boundary); end switch boundary case {'w','e'} halfnorm_inv_n = obj.Hiu; halfnorm_inv_t = obj.Hiv; halfnorm_t = obj.Hv; gamm = obj.gamm_u; case {'s','n'} halfnorm_inv_n = obj.Hiv; halfnorm_inv_t = obj.Hiu; halfnorm_t = obj.Hu; gamm = obj.gamm_v; end end function N = size(obj) N = prod(obj.m); end end methods(Static) % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u % and bound_v of scheme schm_v. % [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l') function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); end end end