Mercurial > repos > public > sbplib
diff +scheme/Wave2dCurve.m @ 0:48b6fb693025
Initial commit.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 17 Sep 2015 10:12:50 +0200 |
parents | |
children | 5f6b0b6a012b |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+scheme/Wave2dCurve.m Thu Sep 17 10:12:50 2015 +0200 @@ -0,0 +1,333 @@ +classdef Wave2dCurve < scheme.Scheme + properties + m % Number of points in each direction, possibly a vector + h % Grid spacing + u,v % Grid + x,y % Values of x and y for each grid point + X,Y % Grid point locations as matrices + order % Order accuracy for the approximation + + D % non-stabalized scheme operator + M % Derivative norm + c + J, Ji + a11, a12, a22 + + H % Discrete norm + Hi + H_u, H_v % Norms in the x and y directions + Hu,Hv % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. + Hi_u, Hi_v + Hiu, Hiv + e_w, e_e, e_s, e_n + du_w, dv_w + du_e, dv_e + du_s, dv_s + du_n, dv_n + gamm_u, gamm_v + end + + methods + function obj = Wave2dCurve(m,ti,order,c,opSet) + default_arg('opSet',@sbp.Variable); + + if length(m) == 1 + m = [m m]; + end + + m_u = m(1); + m_v = m(2); + m_tot = m_u*m_v; + + [u, h_u] = util.get_grid(0, 1, m_u); + [v, h_v] = util.get_grid(0, 1, m_v); + + + % Operators + ops_u = opSet(m_u,h_u,order); + ops_v = opSet(m_v,h_v,order); + + I_u = speye(m_u); + I_v = speye(m_v); + + D1_u = sparse(ops_u.derivatives.D1); + D2_u = ops_u.derivatives.D2; + H_u = sparse(ops_u.norms.H); + Hi_u = sparse(ops_u.norms.HI); + % M_u = sparse(ops_u.norms.M); + e_l_u = sparse(ops_u.boundary.e_1); + e_r_u = sparse(ops_u.boundary.e_m); + d1_l_u = sparse(ops_u.boundary.S_1); + d1_r_u = sparse(ops_u.boundary.S_m); + + D1_v = sparse(ops_v.derivatives.D1); + D2_v = ops_v.derivatives.D2; + H_v = sparse(ops_v.norms.H); + Hi_v = sparse(ops_v.norms.HI); + % M_v = sparse(ops_v.norms.M); + e_l_v = sparse(ops_v.boundary.e_1); + e_r_v = sparse(ops_v.boundary.e_m); + d1_l_v = sparse(ops_v.boundary.S_1); + d1_r_v = sparse(ops_v.boundary.S_m); + + + % Metric derivatives + [X,Y] = ti.map(u,v); + + [x_u,x_v] = gridDerivatives(X,D1_u,D1_v); + [y_u,y_v] = gridDerivatives(Y,D1_u,D1_v); + + + + J = x_u.*y_v - x_v.*y_u; + a11 = 1./J .* (x_v.^2 + y_v.^2); %% GÖR SOM MATRISER + a12 = -1./J .* (x_u.*x_v + y_u.*y_v); + a22 = 1./J .* (x_u.^2 + y_u.^2); + lambda = 1/2 * (a11 + a22 - sqrt((a11-a22).^2 + 4*a12.^2)); + + dof_order = reshape(1:m_u*m_v,m_v,m_u); + + Duu = sparse(m_tot); + Dvv = sparse(m_tot); + + for i = 1:m_v + D = D2_u(a11(i,:)); + p = dof_order(i,:); + Duu(p,p) = D; + end + + for i = 1:m_u + D = D2_v(a22(:,i)); + p = dof_order(:,i); + Dvv(p,p) = D; + end + + L_12 = spdiags(a12(:),0,m_tot,m_tot); + Du = kr(D1_u,I_v); + Dv = kr(I_u,D1_v); + + Duv = Du*L_12*Dv; + Dvu = Dv*L_12*Du; + + + + obj.H = kr(H_u,H_v); + obj.Hi = kr(Hi_u,Hi_v); + obj.Hu = kr(H_u,I_v); + obj.Hv = kr(I_u,H_v); + obj.Hiu = kr(Hi_u,I_v); + obj.Hiv = kr(I_u,Hi_v); + + % obj.M = kr(M_u,H_v)+kr(H_u,M_v); + obj.e_w = kr(e_l_u,I_v); + obj.e_e = kr(e_r_u,I_v); + obj.e_s = kr(I_u,e_l_v); + obj.e_n = kr(I_u,e_r_v); + obj.du_w = kr(d1_l_u,I_v); + obj.dv_w = (obj.e_w'*Dv)'; + obj.du_e = kr(d1_r_u,I_v); + obj.dv_e = (obj.e_e'*Dv)'; + obj.du_s = (obj.e_s'*Du)'; + obj.dv_s = kr(I_u,d1_l_v); + obj.du_n = (obj.e_n'*Du)'; + obj.dv_n = kr(I_u,d1_r_v); + + obj.m = m; + obj.h = [h_u h_v]; + obj.order = order; + + + obj.c = c; + obj.J = spdiags(J(:),0,m_tot,m_tot); + obj.Ji = spdiags(1./J(:),0,m_tot,m_tot); + obj.a11 = a11; + obj.a12 = a12; + obj.a22 = a22; + obj.D = obj.Ji*c^2*(Duu + Duv + Dvu + Dvv); + obj.u = u; + obj.v = v; + obj.X = X; + obj.Y = Y; + obj.x = X(:); + obj.y = Y(:); + + obj.gamm_u = h_u*ops_u.borrowing.M.S; + obj.gamm_v = h_v*ops_v.borrowing.M.S; + end + + + % Closure functions return the opertors applied to the own doamin to close the boundary + % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. + % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. + % type is a string specifying the type of boundary condition if there are several. + % data is a function returning the data that should be applied at the boundary. + % neighbour_scheme is an instance of Scheme that should be interfaced to. + % neighbour_boundary is a string specifying which boundary to interface to. + function [closure, penalty] = boundary_condition(obj,boundary,type,data) + default_arg('type','neumann'); + default_arg('data',0); + + [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv] = obj.get_boundary_ops(boundary); + + switch type + % Dirichlet boundary condition + case {'D','d','dirichlet'} + error('not implemented') + alpha = obj.alpha; + + % tau1 < -alpha^2/gamma + tuning = 1.1; + tau1 = -tuning*alpha/gamm; + tau2 = s*alpha; + + p = tau1*e + tau2*d; + + closure = halfnorm_inv*p*e'; + + pp = halfnorm_inv*p; + switch class(data) + case 'double' + penalty = pp*data; + case 'function_handle' + penalty = @(t)pp*data(t); + otherwise + error('Weird data argument!') + end + + + % Neumann boundary condition + case {'N','n','neumann'} + c = obj.c; + + + a_n = spdiags(coeff_n,0,length(coeff_n),length(coeff_n)); + a_t = spdiags(coeff_t,0,length(coeff_t),length(coeff_t)); + d = (a_n * d_n' + a_t*d_t')'; + + tau1 = -s; + tau2 = 0; + tau = c.^2 * obj.Ji*(tau1*e + tau2*d); + + closure = halfnorm_inv*tau*d'; + + pp = halfnorm_inv*tau; + switch class(data) + case 'double' + penalty = pp*data; + case 'function_handle' + penalty = @(t)pp*data(t); + otherwise + error('Weird data argument!') + end + + % Unknown, boundary condition + otherwise + error('No such boundary condition: type = %s',type); + end + end + + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) + % u denotes the solution in the own domain + % v denotes the solution in the neighbour domain + [e_u, d_n_u, d_t_u, coeff_n_u, coeff_t_u, s_u, gamm_u, halfnorm_inv_u_n, halfnorm_inv_u_t, halfnorm_u_t] = obj.get_boundary_ops(boundary); + [e_v, d_n_v, d_t_v, coeff_n_v, coeff_t_v, s_v, gamm_v, halfnorm_inv_v_n, halfnorm_inv_v_t, halfnorm_v_t] = neighbour_scheme.get_boundary_ops(boundary); + + F_u = s_u * a_n_u * d_n_u' + s_u * a_t_u*d_t_u'; + F_v = s_v * a_n_v * d_n_v' + s_v * a_t_v*d_t_v'; + + tau = 111111111111111111111111111111; + sig1 = 1/2; + sig2 = -1/2; + + penalty_parameter_1 = s_u*halfnorm_inv_u_n*(tau + sig1*halfnorm_inv_u_t*F_u'*halfnorm_u_t)*e_u; + penalty_parameter_2 = halfnorm_inv_u_n * sig2 * e_u; + + tuning = 1.2; + + alpha_u = obj.alpha; + alpha_v = neighbour_scheme.alpha; + + % tau1 < -(alpha_u/gamm_u + alpha_v/gamm_v) + + tau1 = -(alpha_u/gamm_u + alpha_v/gamm_v) * tuning; + tau2 = s_u*1/2*alpha_u; + sig1 = s_u*(-1/2); + sig2 = 0; + + tau = tau1*e_u + tau2*d_u; + sig = sig1*e_u + sig2*d_u; + + closure = halfnorm_inv*( tau*e_u' + sig*alpha_u*d_u'); + penalty = halfnorm_inv*(-tau*e_v' - sig*alpha_v*d_v'); + end + + % Ruturns the boundary ops and sign for the boundary specified by the string boundary. + % The right boundary is considered the positive boundary + function [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t] = get_boundary_ops(obj,boundary) + switch boundary + case 'w' + e = obj.e_w; + d_n = obj.du_w; + d_t = obj.dv_w; + s = -1; + + coeff_n = obj.a11(:,1); + coeff_t = obj.a12(:,1); + case 'e' + e = obj.e_e; + d_n = obj.du_e; + d_t = obj.dv_e; + s = 1; + + coeff_n = obj.a11(:,end); + coeff_t = obj.a12(:,end); + case 's' + e = obj.e_s; + d_n = obj.dv_s; + d_t = obj.du_s; + s = -1; + + coeff_n = obj.a22(1,:)'; + coeff_t = obj.a12(1,:)'; + case 'n' + e = obj.e_n; + d_n = obj.dv_n; + d_t = obj.du_n; + s = 1; + + coeff_n = obj.a22(end,:)'; + coeff_t = obj.a12(end,:)'; + otherwise + error('No such boundary: boundary = %s',boundary); + end + + switch boundary + case {'w','e'} + halfnorm_inv_n = obj.Hiu; + halfnorm_inv_t = obj.Hiv; + halfnorm_t = obj.Hv; + gamm = obj.gamm_u; + case {'s','n'} + halfnorm_inv_n = obj.Hiv; + halfnorm_inv_t = obj.Hiu; + halfnorm_t = obj.Hu; + gamm = obj.gamm_v; + end + end + + function N = size(obj) + N = prod(obj.m); + end + + end + + methods(Static) + % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u + % and bound_v of scheme schm_v. + % [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l') + function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) + [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); + [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); + end + end +end \ No newline at end of file