Mercurial > repos > public > sbplib
view +sbp/+implementations/d1_noneq_minimal_10.m @ 1031:2ef20d00b386 feature/advectionRV
For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 17 Jan 2019 10:25:06 +0100 |
parents | f7ac3cd6eeaa |
children | 4cb627c7fb90 |
line wrap: on
line source
function [D1,H,x,h] = d1_noneq_minimal_10(N,L) % L: Domain length % N: Number of grid points if(nargin < 2) L = 1; end if(N<16) error('Operator requires at least 16 grid points'); end % BP: Number of boundary points % m: Number of nonequidistant spacings % order: Accuracy of interior stencil BP = 8; m = 3; order = 10; %%%% Non-equidistant grid points %%%%% x0 = 0.0000000000000e+00; x1 = 5.8556160757529e-01; x2 = 1.7473267488572e+00; x3 = 3.0000000000000e+00; x4 = 4.0000000000000e+00; x5 = 5.0000000000000e+00; x6 = 6.0000000000000e+00; x7 = 7.0000000000000e+00; x8 = 8.0000000000000e+00; xb = sparse(m+1,1); for i = 0:m xb(i+1) = eval(['x' num2str(i)]); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Compute h %%%%%%%%%% h = L/(2*xb(end) + N-1-2*m); %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Define grid %%%%%%%% x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ]; %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Norm matrix %%%%%%%% P = sparse(BP,1); %#ok<*NASGU> P0 = 1.6717213975289e-01; P1 = 9.3675739171278e-01; P2 = 1.3035532379753e+00; P3 = 1.1188461804303e+00; P4 = 9.6664345922660e-01; P5 = 1.0083235564392e+00; P6 = 9.9858767377362e-01; P7 = 1.0001163606893e+00; for i = 0:BP-1 P(i+1) = eval(['P' num2str(i)]); end H = ones(N,1); H(1:BP) = P; H(end-BP+1:end) = flip(P); H = spdiags(h*H,0,N,N); %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Q matrix %%%%%%%%%%% % interior stencil switch order case 2 d = [-1/2,0,1/2]; case 4 d = [1/12,-2/3,0,2/3,-1/12]; case 6 d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60]; case 8 d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280]; case 10 d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260]; case 12 d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544]; end d = repmat(d,N,1); Q = spdiags(d,-order/2:order/2,N,N); % Boundaries Q0_0 = -5.0000000000000e-01; Q0_1 = 6.7349296966214e-01; Q0_2 = -2.5186401896559e-01; Q0_3 = 8.3431385420901e-02; Q0_4 = 2.5480326895984e-02; Q0_5 = -4.5992420658252e-02; Q0_6 = 1.7526412909003e-02; Q0_7 = -2.0746552641799e-03; Q0_8 = 0.0000000000000e+00; Q0_9 = 0.0000000000000e+00; Q0_10 = 0.0000000000000e+00; Q0_11 = 0.0000000000000e+00; Q0_12 = 0.0000000000000e+00; Q1_0 = -6.7349296966214e-01; Q1_1 = 0.0000000000000e+00; Q1_2 = 9.1982892384044e-01; Q1_3 = -2.7262271754043e-01; Q1_4 = -5.0992113348238e-02; Q1_5 = 1.1814647281129e-01; Q1_6 = -4.6693123378079e-02; Q1_7 = 5.8255272771571e-03; Q1_8 = 0.0000000000000e+00; Q1_9 = 0.0000000000000e+00; Q1_10 = 0.0000000000000e+00; Q1_11 = 0.0000000000000e+00; Q1_12 = 0.0000000000000e+00; Q2_0 = 2.5186401896559e-01; Q2_1 = -9.1982892384044e-01; Q2_2 = 0.0000000000000e+00; Q2_3 = 7.8566746772741e-01; Q2_4 = -2.4097806629929e-02; Q2_5 = -1.5312168858669e-01; Q2_6 = 6.9451518963875e-02; Q2_7 = -9.9345865998262e-03; Q2_8 = 0.0000000000000e+00; Q2_9 = 0.0000000000000e+00; Q2_10 = 0.0000000000000e+00; Q2_11 = 0.0000000000000e+00; Q2_12 = 0.0000000000000e+00; Q3_0 = -8.3431385420901e-02; Q3_1 = 2.7262271754043e-01; Q3_2 = -7.8566746772741e-01; Q3_3 = 0.0000000000000e+00; Q3_4 = 6.2047871210535e-01; Q3_5 = 1.4776775176509e-02; Q3_6 = -4.6889652372990e-02; Q3_7 = 7.3166499053672e-03; Q3_8 = 7.9365079365079e-04; Q3_9 = 0.0000000000000e+00; Q3_10 = 0.0000000000000e+00; Q3_11 = 0.0000000000000e+00; Q3_12 = 0.0000000000000e+00; Q4_0 = -2.5480326895984e-02; Q4_1 = 5.0992113348238e-02; Q4_2 = 2.4097806629929e-02; Q4_3 = -6.2047871210535e-01; Q4_4 = 0.0000000000000e+00; Q4_5 = 6.9425006383507e-01; Q4_6 = -1.5686345740485e-01; Q4_7 = 4.2609496719925e-02; Q4_8 = -9.9206349206349e-03; Q4_9 = 7.9365079365079e-04; Q4_10 = 0.0000000000000e+00; Q4_11 = 0.0000000000000e+00; Q4_12 = 0.0000000000000e+00; Q5_0 = 4.5992420658252e-02; Q5_1 = -1.1814647281129e-01; Q5_2 = 1.5312168858669e-01; Q5_3 = -1.4776775176509e-02; Q5_4 = -6.9425006383507e-01; Q5_5 = 0.0000000000000e+00; Q5_6 = 8.0719535654891e-01; Q5_7 = -2.2953297936781e-01; Q5_8 = 5.9523809523809e-02; Q5_9 = -9.9206349206349e-03; Q5_10 = 7.9365079365079e-04; Q5_11 = 0.0000000000000e+00; Q5_12 = 0.0000000000000e+00; Q6_0 = -1.7526412909003e-02; Q6_1 = 4.6693123378079e-02; Q6_2 = -6.9451518963875e-02; Q6_3 = 4.6889652372990e-02; Q6_4 = 1.5686345740485e-01; Q6_5 = -8.0719535654891e-01; Q6_6 = 0.0000000000000e+00; Q6_7 = 8.3142546796428e-01; Q6_8 = -2.3809523809524e-01; Q6_9 = 5.9523809523809e-02; Q6_10 = -9.9206349206349e-03; Q6_11 = 7.9365079365079e-04; Q6_12 = 0.0000000000000e+00; Q7_0 = 2.0746552641799e-03; Q7_1 = -5.8255272771571e-03; Q7_2 = 9.9345865998262e-03; Q7_3 = -7.3166499053672e-03; Q7_4 = -4.2609496719925e-02; Q7_5 = 2.2953297936781e-01; Q7_6 = -8.3142546796428e-01; Q7_7 = 0.0000000000000e+00; Q7_8 = 8.3333333333333e-01; Q7_9 = -2.3809523809524e-01; Q7_10 = 5.9523809523809e-02; Q7_11 = -9.9206349206349e-03; Q7_12 = 7.9365079365079e-04; for i = 1:BP for j = 1:BP Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]); Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]); end end %%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Difference operator %% D1 = H\Q; %%%%%%%%%%%%%%%%%%%%%%%%%%%