Mercurial > repos > public > sbplib
view +sbp/+implementations/d1_noneq_minimal_10.m @ 267:f7ac3cd6eeaa operator_remake
Sparsified all implementation files, removed all matlab warnings, fixed small bugs on minimum grid points.
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Fri, 09 Sep 2016 14:53:41 +0200 |
parents | bfa130b7abf6 |
children | 4cb627c7fb90 |
line wrap: on
line source
function [D1,H,x,h] = d1_noneq_minimal_10(N,L) % L: Domain length % N: Number of grid points if(nargin < 2) L = 1; end if(N<16) error('Operator requires at least 16 grid points'); end % BP: Number of boundary points % m: Number of nonequidistant spacings % order: Accuracy of interior stencil BP = 8; m = 3; order = 10; %%%% Non-equidistant grid points %%%%% x0 = 0.0000000000000e+00; x1 = 5.8556160757529e-01; x2 = 1.7473267488572e+00; x3 = 3.0000000000000e+00; x4 = 4.0000000000000e+00; x5 = 5.0000000000000e+00; x6 = 6.0000000000000e+00; x7 = 7.0000000000000e+00; x8 = 8.0000000000000e+00; xb = sparse(m+1,1); for i = 0:m xb(i+1) = eval(['x' num2str(i)]); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Compute h %%%%%%%%%% h = L/(2*xb(end) + N-1-2*m); %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Define grid %%%%%%%% x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ]; %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Norm matrix %%%%%%%% P = sparse(BP,1); %#ok<*NASGU> P0 = 1.6717213975289e-01; P1 = 9.3675739171278e-01; P2 = 1.3035532379753e+00; P3 = 1.1188461804303e+00; P4 = 9.6664345922660e-01; P5 = 1.0083235564392e+00; P6 = 9.9858767377362e-01; P7 = 1.0001163606893e+00; for i = 0:BP-1 P(i+1) = eval(['P' num2str(i)]); end H = ones(N,1); H(1:BP) = P; H(end-BP+1:end) = flip(P); H = spdiags(h*H,0,N,N); %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Q matrix %%%%%%%%%%% % interior stencil switch order case 2 d = [-1/2,0,1/2]; case 4 d = [1/12,-2/3,0,2/3,-1/12]; case 6 d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60]; case 8 d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280]; case 10 d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260]; case 12 d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544]; end d = repmat(d,N,1); Q = spdiags(d,-order/2:order/2,N,N); % Boundaries Q0_0 = -5.0000000000000e-01; Q0_1 = 6.7349296966214e-01; Q0_2 = -2.5186401896559e-01; Q0_3 = 8.3431385420901e-02; Q0_4 = 2.5480326895984e-02; Q0_5 = -4.5992420658252e-02; Q0_6 = 1.7526412909003e-02; Q0_7 = -2.0746552641799e-03; Q0_8 = 0.0000000000000e+00; Q0_9 = 0.0000000000000e+00; Q0_10 = 0.0000000000000e+00; Q0_11 = 0.0000000000000e+00; Q0_12 = 0.0000000000000e+00; Q1_0 = -6.7349296966214e-01; Q1_1 = 0.0000000000000e+00; Q1_2 = 9.1982892384044e-01; Q1_3 = -2.7262271754043e-01; Q1_4 = -5.0992113348238e-02; Q1_5 = 1.1814647281129e-01; Q1_6 = -4.6693123378079e-02; Q1_7 = 5.8255272771571e-03; Q1_8 = 0.0000000000000e+00; Q1_9 = 0.0000000000000e+00; Q1_10 = 0.0000000000000e+00; Q1_11 = 0.0000000000000e+00; Q1_12 = 0.0000000000000e+00; Q2_0 = 2.5186401896559e-01; Q2_1 = -9.1982892384044e-01; Q2_2 = 0.0000000000000e+00; Q2_3 = 7.8566746772741e-01; Q2_4 = -2.4097806629929e-02; Q2_5 = -1.5312168858669e-01; Q2_6 = 6.9451518963875e-02; Q2_7 = -9.9345865998262e-03; Q2_8 = 0.0000000000000e+00; Q2_9 = 0.0000000000000e+00; Q2_10 = 0.0000000000000e+00; Q2_11 = 0.0000000000000e+00; Q2_12 = 0.0000000000000e+00; Q3_0 = -8.3431385420901e-02; Q3_1 = 2.7262271754043e-01; Q3_2 = -7.8566746772741e-01; Q3_3 = 0.0000000000000e+00; Q3_4 = 6.2047871210535e-01; Q3_5 = 1.4776775176509e-02; Q3_6 = -4.6889652372990e-02; Q3_7 = 7.3166499053672e-03; Q3_8 = 7.9365079365079e-04; Q3_9 = 0.0000000000000e+00; Q3_10 = 0.0000000000000e+00; Q3_11 = 0.0000000000000e+00; Q3_12 = 0.0000000000000e+00; Q4_0 = -2.5480326895984e-02; Q4_1 = 5.0992113348238e-02; Q4_2 = 2.4097806629929e-02; Q4_3 = -6.2047871210535e-01; Q4_4 = 0.0000000000000e+00; Q4_5 = 6.9425006383507e-01; Q4_6 = -1.5686345740485e-01; Q4_7 = 4.2609496719925e-02; Q4_8 = -9.9206349206349e-03; Q4_9 = 7.9365079365079e-04; Q4_10 = 0.0000000000000e+00; Q4_11 = 0.0000000000000e+00; Q4_12 = 0.0000000000000e+00; Q5_0 = 4.5992420658252e-02; Q5_1 = -1.1814647281129e-01; Q5_2 = 1.5312168858669e-01; Q5_3 = -1.4776775176509e-02; Q5_4 = -6.9425006383507e-01; Q5_5 = 0.0000000000000e+00; Q5_6 = 8.0719535654891e-01; Q5_7 = -2.2953297936781e-01; Q5_8 = 5.9523809523809e-02; Q5_9 = -9.9206349206349e-03; Q5_10 = 7.9365079365079e-04; Q5_11 = 0.0000000000000e+00; Q5_12 = 0.0000000000000e+00; Q6_0 = -1.7526412909003e-02; Q6_1 = 4.6693123378079e-02; Q6_2 = -6.9451518963875e-02; Q6_3 = 4.6889652372990e-02; Q6_4 = 1.5686345740485e-01; Q6_5 = -8.0719535654891e-01; Q6_6 = 0.0000000000000e+00; Q6_7 = 8.3142546796428e-01; Q6_8 = -2.3809523809524e-01; Q6_9 = 5.9523809523809e-02; Q6_10 = -9.9206349206349e-03; Q6_11 = 7.9365079365079e-04; Q6_12 = 0.0000000000000e+00; Q7_0 = 2.0746552641799e-03; Q7_1 = -5.8255272771571e-03; Q7_2 = 9.9345865998262e-03; Q7_3 = -7.3166499053672e-03; Q7_4 = -4.2609496719925e-02; Q7_5 = 2.2953297936781e-01; Q7_6 = -8.3142546796428e-01; Q7_7 = 0.0000000000000e+00; Q7_8 = 8.3333333333333e-01; Q7_9 = -2.3809523809524e-01; Q7_10 = 5.9523809523809e-02; Q7_11 = -9.9206349206349e-03; Q7_12 = 7.9365079365079e-04; for i = 1:BP for j = 1:BP Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]); Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]); end end %%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Difference operator %% D1 = H\Q; %%%%%%%%%%%%%%%%%%%%%%%%%%%